1
|
Sun Z, Shao C, Hao S, Zhang J, Ren W, Wang B, Xiao L, Lei H, Liu TX, Yuan Z, Sun RC. Lignin-Based Photothermal Materials: Bridging Sustainability and High-Efficiency Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501259. [PMID: 40279516 DOI: 10.1002/advs.202501259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Indexed: 04/27/2025]
Abstract
Photothermal materials can effectively absorb light and convert it into heat, providing sustainable solutions to mitigate environmental pollution and energy shortages. Compared to traditional photothermal materials, lignin has garnered significant attention due to its wide availability, low cost, biocompatibility, renewability, and sustainability. Consequently, lignin-based materials are considered ideal candidates for the development of eco-friendly photothermal systems, aligning well with the increasing demand for sustainable energy solutions. This review discusses the potential of lignin-based photothermal materials, highlighting their unique molecular structure and the photothermal properties imparted by their aromatic rings, which facilitate effective energy conversion through non-radiative vibrational relaxation. Discussed the latest advances in the applications of lignin photothermal materials in photothermal drive, solar desalination, and biomedicine. Despite the significant potential of lignin, challenges such as structural variability, long-term stability, and scalability remain critical. This paper integrates recent progress and proposes strategies to optimize the photothermal performance of lignin-based materials, while emphasizing important directions for sustainable development, thereby providing a roadmap to fully realize the potential of lignin in next-generation green technologies.
Collapse
Affiliation(s)
- Zhiwen Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sanwei Hao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jifei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenfeng Ren
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Lingping Xiao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Hanhui Lei
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Terence X Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
2
|
Mateo S, Fabbrizi G, Moya AJ. Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers (Basel) 2025; 17:952. [PMID: 40219341 PMCID: PMC11991304 DOI: 10.3390/polym17070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Lignin, the most abundant aromatic polymer in nature, plays a critical role in lignocellulosic biomasses by providing structural support. However, its presence complicates the industrial exploitation of these materials for biofuels, paper production and other high-value compounds. Annually, the industrial extraction of lignin reaches an estimated 225 million tons, yet only a fraction is recovered for reuse, with most incinerated as low-value fuel. The growing interest in lignin potential has sparked research into sustainable recovery methods from lignocellulosic agro-industrial wastes. This review examines the chemical, physical and physicochemical processes for isolating lignin, focusing on innovative, sustainable technologies that align with the principles of a circular economy. Key challenges include lignin structural complexity and heterogeneity, which hinder its efficient extraction and application. Nonetheless, its properties such as high thermal stability, biodegradability and abundant carbon content place lignin as a promising material for diverse industrial applications, including chemical synthesis and energy generation. A structured analysis of advancements in lignin extraction, characterization and valorization offers insights into transforming this undervalued by-product into a vital resource, reducing reliance on non-renewable materials while addressing environmental sustainability.
Collapse
Affiliation(s)
- Soledad Mateo
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| | - Giacomo Fabbrizi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06122 Perugia, Italy;
- CIRIAF-CRB (Biomass Research Centre), Department of Engineering, Università degli Studi di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy
| | - Alberto J. Moya
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| |
Collapse
|
3
|
Idris NN, Brosse N, Ziegler-Devin I, Chrusciel L, Girard V, Hussin MH. Lignin modification through steam explosion pretreatment: A comparison with direct organosolv pulping. Int J Biol Macromol 2025; 306:141627. [PMID: 40031402 DOI: 10.1016/j.ijbiomac.2025.141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
This study investigates the effects of different delignification processes on oil palm frond (OPF) biomass, focusing on the structural characteristics and antioxidant properties of lignin isolated with organosolv pretreatment and a combined pretreatment of organosolv and steam explosion (SE). Functional groups in organosolv lignin (OL) and steam explosion organosolv lignin (SEOL) were analyzed and compared using multiple complementary analyses such as FTIR spectroscopy, NMR spectroscopy, GPC chromatography, CHN and thermal analyses, lignin antioxidant activity via reducing power assay and dissolution test. The findings reveal that SEOL achieved the highest solid recovery at 11.5 % yield among the samples, surpassing OL, which yielded 8.7 %. Both isolated lignin types predominantly feature non-condensed G-type and S-type units, with relatively fewer H-type units, consistent with existing research. Moreover, this study confirms that modification of lignin with SE pretreatment reduces its molecular weight (Mw) and generates smaller fragments, enhancing its water solubility relative to unmodified lignin (DSEOL: 37.4 % > DOL: 17.5 %). This demonstrates that SEOL exhibits enhanced antioxidant properties with superior reducing power compared to OL. Consequently, the modifications have improved the structural properties and antioxidant capabilities of lignin polymers, paving the way for innovative lignin-based applications.
Collapse
Affiliation(s)
- Nor Najhan Idris
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB-GP4W), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB-GP4W), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laurent Chrusciel
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB-GP4W), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Victor Girard
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB-GP4W), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Siharova NV, Pączkowski P, Sementsov YI, Zhuravsky SV, Borysenko MV, Terets AD, Mischanchuk OV, Terets MI, Hrebelna YV, Gawdzik B. Thermal Degradation of Polymer Composites Based on Unsaturated-Polyester-Resin- and Vinyl-Ester-Resin- Filled Kraft Lignin. MATERIALS (BASEL, SWITZERLAND) 2025; 18:524. [PMID: 39942189 PMCID: PMC11818579 DOI: 10.3390/ma18030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
The creation of heat-resistant polymers represents one of the most significant challenges and priorities in contemporary scientific research. The incorporation of a filler of analogous nature and content into disparate types of resins will facilitate the identification of the relationship between properties and the structure of macromolecular chains in synthetic resins that function as composite matrices. The objective of this study was to ascertain the impact of lignin at 5 and 15% by weight on the thermal degradation of two resin-based composites with disparate structural compositions. The thermal decomposition products of the composites were determined by the method of temperature-programmed desorption mass spectroscopy (TPD MS). The thermal oxidative degradation patterns of polymer composites were investigated through derivatography (Q-1500D). It was demonstrated that the incorporation of lignin in modest quantities has a negligible impact on the thermal stability of the composites. Notably, the temperature at which the composites undergo thermal decomposition during thermal oxidation degradation exhibits a variation of over 10 °C, suggesting that the utilisation of lignin holds promise for the development of environmentally benign and cost-effective materials for diverse industrial applications.
Collapse
Affiliation(s)
- Nadiia V. Siharova
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
- Department of Biotechnical Problems of Diagnostics IPCC, NAS of Ukraine, 42/1 Nauky Prosp., 03028 Kyiv, Ukraine
| | - Przemysław Pączkowski
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland; (P.P.); (B.G.)
| | - Yuriy I. Sementsov
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
- Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Kechuang Building, N777 Zhongguan Road, Ningbo 315211, China
| | - Serhiy V. Zhuravsky
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
| | - Mykola V. Borysenko
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
| | - Andriy D. Terets
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Olexandr V. Mischanchuk
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
| | - Mariia I. Terets
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
| | - Yulia V. Hrebelna
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine; (Y.I.S.); (S.V.Z.); (M.V.B.); (A.D.T.); (O.V.M.); (M.I.T.); (Y.V.H.)
| | - Barbara Gawdzik
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland; (P.P.); (B.G.)
| |
Collapse
|
5
|
K A, Kumar BS, Reddy SG, Prashanthi K, Kugabalasooriar S, Posa JK. A novel nature-inspired ligno-alginate hydrogel coated with Fe 3O 4/GO for the efficient-sustained release of levodopa. Heliyon 2024; 10:e40547. [PMID: 39654723 PMCID: PMC11625254 DOI: 10.1016/j.heliyon.2024.e40547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Levodopa (LD), a precursor to dopamine, is commonly used to treat Parkinson's disease. However, its oral formulations suffer from low bioavailability, toxicity, and untargeted delivery. This study aimed to develop a nature-based hydrogel for sustained LD release, addressing these limitations. The hydrogel was synthesized using sodium alginate (SAl) and lignosulfonic acid (LSA) as polymers, cross-linked with Ba2+ ions, and coated with iron oxide nanoparticles (Fe3O4) and graphene oxide nanoparticles (GO). The resulting ligno-alginate films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM). In-vitro drug release was evaluated using UV-visible spectroscopy. The formulations LD 2 (SAl-LSA-GO-LD) and LD 3 (SAl-LSA-Fe3O4-GO-LD) demonstrated superior sustained release properties, attributed to the hydrophobic layer provided by GO, which controlled the swelling rate and slowed drug diffusion. LD 2 showed the highest drug loading efficiency at 69 % and a sustained release of 24 % over 48 h, which was better than previously reported work of 64 % in 30 h. Incorporating Fe3O4 endowed the delivery vehicle with magnetic properties for targeted drug delivery. This study presents a novel and efficient approach for the sustained release of LD using a ligno-alginate hydrogel coated with Fe3O4 and GO, offering promising potential for Parkinson's treatment.
Collapse
Affiliation(s)
- Athira K
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - B Siva Kumar
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - S Giridhar Reddy
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - K. Prashanthi
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | | | - Jyothi Kumari Posa
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, 515001, India
| |
Collapse
|
6
|
Tiz DB, Tofani G, Vicente FA, Likozar B. Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes. Antioxidants (Basel) 2024; 13:1387. [PMID: 39594529 PMCID: PMC11591419 DOI: 10.3390/antiox13111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Monolignols represent pivotal alcohol-based constituents in lignin synthesis, playing indispensable roles in plant growth and development with profound implications for industries reliant on wood and paper. Monolignols and their derivates have multiple applications in several industries. Monolignols exhibit antioxidant activity due to their ability to donate hydrogen atoms or electrons to neutralize free radicals, thus preventing oxidative stress and damage to cells. Characterized by their alcohol functionalities, monolignols present three main forms: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. In nature, particularly in plants, monolignols with geometry (E) predominate over their Z counterparts. The methods for obtaining the three canonical monolignols, two less-common monolignols, and a monolignol analogue are addressed to present an overview of these phenol-based compounds, particularly from a synthetic standpoint. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is used to explain the advantages and disadvantages of synthesizing monolignols, key alcohol-containing raw materials with enormous significance in both plant biology and industrial applications, using bench chemical methods. The uniqueness of this work is that it provides an overview of the synthetic pathways of monolignols to assist researchers in pharmaceutical and biological fields in selecting an appropriate procedure for the preparation of their lignin models. Moreover, we aim to inspire scientists, particularly chemists, to develop more sustainable synthetic protocols for monolignols.
Collapse
Affiliation(s)
- Davide Benedetto Tiz
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Giorgio Tofani
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Filipa A. Vicente
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (G.T.); (B.L.)
| |
Collapse
|
7
|
Jeong S, Lee S, Lee G, Hyun J, Ryu B. Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. Int J Mol Sci 2024; 25:11771. [PMID: 39519327 PMCID: PMC11546589 DOI: 10.3390/ijms252111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Fucoidan, a sulfated polysaccharide found primarily in brown algae, is known for exhibiting various biological activities, many of which have been attributed to its sulfate content. However, recent advancements in techniques for analyzing polysaccharide structures have highlighted that not only the sulfate groups but also the composition, molecular weight, and structures of the polysaccharides and their monomers play a crucial role in modulating biological effects. This review comprehensively provides the monosaccharide composition, degree of sulfation, molecular weight distribution, and linkage of glycosidic bonds of fucoidan, focusing on the diversity of its biological activities based on various characteristics. The implications of these findings for future applications and potential therapeutic uses of fucoidan are also discussed.
Collapse
Affiliation(s)
- Seungjin Jeong
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seokmin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Geumbin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Jimin Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Bomi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Teo HL, Abdul Wahab R, Zainal-Abidin MH, Mark-Lee WF, Susanti E. Co-production of cellulose and lignin by Taguchi-optimized one-pot deep eutectic solvent-assisted ball milling pretreatment of raw oil palm leaves. Int J Biol Macromol 2024; 280:135787. [PMID: 39304051 DOI: 10.1016/j.ijbiomac.2024.135787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
This study explores an eco-friendly delignification technique for raw oil palm leaves (OPL), highlighting the optimized conditions of choline chloride-lactic acid deep eutectic solvent (DES)-mediated ball milling pretreatment to maximize the co-production yields of highly crystalline cellulose and lignin. Our five-level-four-factor Taguchi design identified the optimal reaction settings for cellulose production (85.83 % yield, 47.28 % crystallinity) as 90-minute milling, 1500 rpm, mill-ball size ratio of 30:10, ball-to-sample mass ratio of 20:1, DES-to-sample mass ratio of 3:1. Conversely, the maximal lignin extraction yield (35.23 %) occurred optimally at 120-minute milling, 600 rpm, mill-ball size ratio of 25:5, ball-to-sample mass ratio of 20:1 and DES-to-sample mass ratio of 9:1. Statistical results showed that milling frequency (p-value ≤ 0.0001) was highly significant in improving cellulose crystallinity and yield, while DES-to-sample mass ratio (p-value ≤ 0.0001) was the most impacting on lignin yield. The thermogravimetric method affirmed the elevated cellulose thermal stability, corroborating the enhanced cellulose content (40.14 % to 73.67 %) alongside elevated crystallinity and crystallite size (3.31 to 4.72 nm) shown by X-ray diffractograms. The increased surface roughness seen in micrographs mirrored the above-said post-treatment changes. In short, our optimized one-pot dual-action pretreatment effectively delignified the raw OPL to produce cellulose-rich material with enhanced crystallinity and lignin solidity.
Collapse
Affiliation(s)
- Hwee Li Teo
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Investigative and Forensic Sciences Research Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Mohd Hamdi Zainal-Abidin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Evi Susanti
- Biotechnology Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
| |
Collapse
|
9
|
Li Y, Li J, Ren B, Cheng H. Conversion of Lignin to Nitrogenous Chemicals and Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5110. [PMID: 39459814 PMCID: PMC11509642 DOI: 10.3390/ma17205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Lignin has long been regarded as waste, readily separated and discarded from the pulp and paper industry. However, as the most abundant aromatic renewable biopolymer in nature, lignin can replace petroleum resources to prepare chemicals containing benzene rings. Therefore, the high-value transformation of lignin has attracted the interest of both academia and industry. Nitrogen-containing compounds and functionalized materials are a class of compounds that have wide applications in chemistry, materials science, energy storage, and other fields. Converting lignin into nitrogenous chemicals and materials is a high-value utilization pathway. Currently, there is a large amount of literature exploring the conversion of lignin. However, a comprehensive review of the transformation of lignin to nitrogenous compounds is lacking. The research progress of lignin conversion to nitrogenous chemicals and functional materials is reviewed in this article. This article provides an overview of the chemical structure and types of industrial lignin, methods of lignin modification, as well as nitrogen-containing chemicals and functional materials prepared from various types of lignin, including their applications in wastewater treatment, slow-release fertilizer, adhesive, coating, and biomedical fields. In addition, the challenges and limitations of nitrogenous lignin-based materials encountered during the development of applications are also discussed. It is believed that this review will act as a key reference and inspiration for researchers in the biomass and material field.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (Y.L.); (B.R.)
| | - Jingrong Li
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Bo Ren
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (Y.L.); (B.R.)
| | - Haiyang Cheng
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| |
Collapse
|
10
|
Panda J, Mishra AK, Mohanta YK, Patowary K, Rauta PR, Mishra B. Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach. WASTE AND BIOMASS VALORIZATION 2024; 15:5607-5637. [DOI: 10.1007/s12649-024-02452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/28/2024] [Indexed: 01/06/2025]
|
11
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
12
|
Trinh TA, Nguyen TL, Kim J. Lignin-Based Antioxidant Hydrogel Patch for the Management of Atopic Dermatitis by Mitigating Oxidative Stress in the Skin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33135-33148. [PMID: 38900923 DOI: 10.1021/acsami.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Atopic dermatitis (AD), a chronic skin condition characterized by itching, redness, and inflammation, is closely associated with heightened levels of endogenous reactive oxygen species (ROS) in the skin. ROS can contribute to the onset and progression of AD through oxidative stress, which leads to the release of proinflammatory cytokines, T-cell differentiation, and the exacerbation of skin symptoms. In this study, we aim to develop a therapeutic antioxidant hydrogel patch for the potential treatment of AD using lignin, a biomass waste material. Lignin contains polyphenol groups that enable it to scavenge ROS and exhibit antioxidant properties. The lignin hydrogel patches, possessing optimized mechanical properties through the control of the lignin and cross-linker ratio, demonstrated high ROS-scavenging capabilities. Furthermore, the lignin hydrogel demonstrated excellent biocompatibility with the skin, exhibiting beneficial properties in protecting human keratinocytes under high oxidative conditions. When applied to an AD mouse model, the hydrogel patch effectively reduced epidermal thickness in inflamed regions, decreased mast cell infiltration, and regulated inflammatory cytokine levels. These findings collectively suggest that lignin serves as a therapeutic hydrogel patch for managing AD by modulating oxidative stress through its ROS-scavenging ability.
Collapse
Affiliation(s)
- Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Liu S, Xiao S, Wang B, Cai Y, Xie R, Wang X, Wang J. Fractional extraction of lignin from coffee beans with low cytotoxicity, excellent anticancer and antioxidant activities. Int J Biol Macromol 2024; 263:130509. [PMID: 38423438 DOI: 10.1016/j.ijbiomac.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Lignin, a biopolymer generated from renewable resources, is widely present in terrestrial plants and possesses notable biosafety characteristics. The objective of this work was to assess the edible safety, in vitro antioxidant, and anti-cancer properties of various lignin fractions isolated from commercially available coffee beans often used for coffee preparation. The findings suggest that the phenolic hydroxyl content increased from 3.26 mmol/g (ED70L) to 5.81 mmol/g (ED0L) with decreasing molecular weight, which resulted in more significant antioxidant properties of the low molecular weight lignin fraction. The findings of the study indicate that the viability of RAW 264.7 and HaCaT cells decreased as the quantity of lignin fractions increased. It was observed that concentrations below 200 μg/mL did not exhibit any harmful effects on normal cells. The results of the study demonstrated a significant reduction of cancer cell growth (specifically A375 cells) at a concentration of 800 μg/mL for all lignin fractions, with an observed inhibition rate of 95 %. The results of this study indicate that the lignin extracts derived from coffee beans exhibit significant potential in mitigating diseases resulting from excessive radical production. Furthermore, these extracts show promise as natural antioxidants and anti-cancer agents.
Collapse
Affiliation(s)
- Shiwen Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Bo Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Yanxue Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Ruihong Xie
- College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China.
| |
Collapse
|
14
|
Mnafki R, Morales A, Sillero L, Khiari R, Moussaoui Y, Labidi J. Integral Valorization of Posidonia oceanica Balls: An Abundant and Potential Biomass. Polymers (Basel) 2024; 16:164. [PMID: 38201829 PMCID: PMC10780897 DOI: 10.3390/polym16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Posidonia oceanica balls (POB), a kind of seagrass, are a significant environmental issue since they are annually discharged onto beaches. Their current usefulness limits interest in their management and enhances the environmental problem. Therefore, in this research, the potential of this lignocellulosic biomass was studied from a holistic biorefinery point of view. To this end, an in-depth study was carried out to select the best pathway for the integral valorization of POBs. First, an autohydrolysis process was studied for the recovery of oligosaccharides. Then, a delignification stage was applied, where, in addition to studying different delignification methods, the influence of the autohydrolysis pre-treatment was also investigated. Finally, cellulose nanofibers (CNFs) were obtained through a chemo-mechanical treatment. The results showed that autohydrolysis not only improved the delignification process and its products, but also allowed the hemicelluloses to be valorized. Acetoformosolv delignification proved to be the most successful in terms of lignin and cellulose properties. However, alkaline delignification was able to extract the highest amount of lignin with low purity. CNFs were also successfully produced from bleached solids. Therefore, the potential of POB as a feedstock for a biorefinery was confirmed, and the pathway should be chosen according to the requirements of the desired end products.
Collapse
Affiliation(s)
- Rim Mnafki
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, Sfax 3018, Tunisia
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Amaia Morales
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Leyre Sillero
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Ramzi Khiari
- Department of Textile, Higher Institute of Technological Studies (ISET) of Ksar-Hellal, Ksar-Hellal 5070, Tunisia
- CNRS, Grenoble INP, LGP2, University of Grenoble Alpes, 38000 Grenoble, France
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, Sfax 3018, Tunisia
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
15
|
Seo K, Shu W, Rückert-Reed C, Gerlinger P, Erb TJ, Kalinowski J, Wittmann C. From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans. Microb Cell Fact 2023; 22:262. [PMID: 38114944 PMCID: PMC10731712 DOI: 10.1186/s12934-023-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.
Collapse
Affiliation(s)
- Kyoyoung Seo
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
16
|
Ivanova D, Nikolova G, Karamalakova Y, Semkova S, Marutsova V, Yaneva Z. Water-Soluble Alkali Lignin as a Natural Radical Scavenger and Anticancer Alternative. Int J Mol Sci 2023; 24:12705. [PMID: 37628882 PMCID: PMC10454704 DOI: 10.3390/ijms241612705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Several phytochemicals, which display antioxidant activity and inhibit cancer cell phenotypes, could be used for cancer treatment and prevention. Lignin, as a part of plant biomass, is the second most abundant natural biopolymer worldwide, and represents approximately 30% of the total organic carbon content of the biosphere. Historically, lignin-based products have been viewed as waste materials of limited industrial usefulness, but modern technologies highlight the applicability of lignin in a variety of industrial branches, including biomedicine. The aims of our preliminary study were to compare the antioxidant properties of water-soluble alkali lignin solutions, before and after UV-B irradiation, as well as to clarify their effect on colon cancer cell viability (Colon 26), applied at low (tolerable) concentrations. The results showed a high antioxidant capacity of lignin solutions, compared to a water-soluble control antioxidant standard (Trolox) and remarkable radical scavenging activity was observed after their UV-B irradiation. Diminishment of cell viability as well as inhibition of the proliferative activity of the colon cancer cell line with an increase in alkali lignin concentrations were observed. Our results confirmed that, due to its biodegradable and biocompatible nature, lignin could be a potential agent for cancer therapy, especially in nanomedicine as a drug delivery system.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria;
| | - Vania Marutsova
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
17
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
18
|
Jha A, Kumar A. Sodium lignosulfonate causes cell membrane perturbation in the human fungal pathogen Candida albicans. World J Microbiol Biotechnol 2023; 39:164. [PMID: 37069369 DOI: 10.1007/s11274-023-03609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Underestimating fungal infections led to a gap in the development of antifungal medication. However, rising rates of morbidity and mortality with fungal infection have revealed an alarming rise in antifungal resistance also. Due to the eukaryotic properties of fungi and the close evolutionary similarity between fungal cells and human hosts, therapeutic targeting of Candida infections is troublesome, along with the development of resistance. The discovery of new antifungals is so far behind schedule that the antifungal pipeline is nearly empty. Previously, we have reported the activity and susceptibility of Sodium lignosulfonate (LIG) against C. albicans. In this work, we have established the mechanistic actions of LIG's activity. We performed flow cytometric analysis for membrane integrity, ergosterol binding assay, crystal violet assay, and membrane leakage assay to analyze quantitatively that the C. albicans membrane is being disrupted in response to LIG. Electron microscopic analysis with SEM and TEM confirmed changes in Candida cellular morphology and membrane perturbation respectively. These findings indicated that LIG causes cell membrane damage in C. albicans. This knowledge about LIG's mechanism of action against C. albicans could be used to explore it further as a lead antifungal molecule to develop it as a potent candidate for antifungal therapeutics in the future.
Collapse
Affiliation(s)
- Anubhuti Jha
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India.
| |
Collapse
|
19
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|