1
|
Xu J, Shi P, Yang L, Cui H. Basic mechanism of mobilizing cell movement during invasion of glioblastoma and target selection of targeted therapy. J Adv Res 2025:S2090-1232(25)00286-3. [PMID: 40345646 DOI: 10.1016/j.jare.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM), also known as glioblastoma multiforme, is a rapidly growing and highly invasive malignant tumor. Due to the inability to clearly distinguish between glioblastoma and normal tissue, surgery cannot achieve safe resection, often leading to poor patient prognosis and inevitable tumor recurrence. According to previous studies, GBM invasion is related to intercellular adhesion, matrix degradation, extracellular matrix and its related adhesion molecules, as well as the molecular matrix of protein hydrolases in the microenvironment of GBM cells and stromal cells. AIM OF REVIEW The aim is to enhance our understanding of the molecular mechanisms underlying GBM invasion and to advance research on targeted therapies for inhibiting GBM invasion. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the protein hydrolases that may affect GBM cell invasion, changes in the cytoskeleton during motility, and the regulatory mechanisms of intracellular signaling pathways in GBM invasion. In addition, we also explored the possibility of targeted therapy against invasion related molecules in GBM.
Collapse
Affiliation(s)
- Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Del Puerto HL, Miranda APGS, Qutob D, Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit E, Castro DC, Pozzolini ET, Duarte NO, Lopes TBG, Taborda DYO, Quirino SM, Elgerbi A, Choy JS, Underwood A. Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis. Genes (Basel) 2024; 15:777. [PMID: 38927713 PMCID: PMC11202618 DOI: 10.3390/genes15060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Collapse
Affiliation(s)
- Helen Lima Del Puerto
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ana Paula G. S. Miranda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Dinah Qutob
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Enio Ferreira
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Felipe H. S. Silva
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna M. Lima
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Barbara A. Carvalho
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna Roque-Souza
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Eduardo Gutseit
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Diego C. Castro
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Emanuele T. Pozzolini
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Nayara O. Duarte
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Thacyana B. G. Lopes
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Daiana Y. O. Taborda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Stella M. Quirino
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH 44720, USA;
| |
Collapse
|
4
|
Ali W, Xiao W, Hoang H, Cali V, Kajdacsy-Balla A. Carcinogenesis and Prognostic Utility of Arginine Methylation-Related Genes in Hepatocellular Cancer. Curr Issues Mol Biol 2023; 45:9422-9430. [PMID: 38132437 PMCID: PMC10742294 DOI: 10.3390/cimb45120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Protein arginine methylation is among the most important post-translational modifications and has been studied in cancers such as those of the lung and breast. However, comparatively less has been investigated regarding hepatocellular carcinoma, with an annual incidence of almost one million cases. Through using in silico methods, this study examined arginine methylation-related gene expression and methylation levels, and alongside network and enrichment analysis attempted to find how said genes can drive tumorigenesis and offer possible therapeutic targets. We found a robust relationship among the selected methylation genes, with ⅞ showing prognostic value regarding overall survival, and a medley of non-arginine methylation pathways also being highlighted through the aforementioned analysis. This study furthers our knowledge of the methylation and expression patterns of arginine histone methylation-related genes, offering jumping points for further wet-lab studies.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Henry Hoang
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Vincent Cali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Turchi L, Sakakini N, Saviane G, Polo B, Saurty-Seerunghen MS, Gabut M, Gouillou CA, Guerlais V, Pasquier C, Vignais ML, Almairac F, Chneiweiss H, Junier MP, Burel-Vandenbos F, Virolle T. CELF2 Sustains a Proliferating/OLIG2+ Glioblastoma Cell Phenotype via the Epigenetic Repression of SOX3. Cancers (Basel) 2023; 15:5038. [PMID: 37894405 PMCID: PMC10605641 DOI: 10.3390/cancers15205038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. Forcing the GBM cells to irreversibly abandon their aggressive stem-like phenotype may offer an alternative to conventional cytotoxic treatments. Here, we show that the RNA binding protein CELF2 is strongly expressed in mitotic and OLIG2-positive GBM cells, while it is downregulated in differentiated and non-mitotic cells by miR-199a-3p, exemplifying GBM intra-tumor heterogeneity. Using patient-derived cells and human GBM samples, we demonstrate that CELF2 plays a key role in maintaining the proliferative/OLIG2 cell phenotype with clonal and tumorigenic properties. Indeed, we show that CELF2 deficiency in patient-derived GSCs drastically reduced tumor growth in the brains of nude mice. We further show that CELF2 promotes TRIM28 and G9a expression, which drive a H3K9me3 epigenetic profile responsible for the silencing of the SOX3 gene. Thus, CELF2, which is positively correlated with OLIG2 and Ki67 expression in human GBM samples, is inversely correlated with SOX3 and miR-199a-3p. Accordingly, the invalidation of SOX3 in CELF2-deficient patient-derived cells rescued proliferation and OLIG2 expression. Finally, patients expressing SOX3 above the median level of expression tend to have a longer life expectancy. CELF2 is therefore a crucial target for the malignant potential of GBM and warrants attention when developing novel anticancer strategies.
Collapse
Affiliation(s)
- Laurent Turchi
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- DRCI, CHU de Nice, 06107 Nice, France
| | - Nathalie Sakakini
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Gaelle Saviane
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Béatrice Polo
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Mirca Saras Saurty-Seerunghen
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Mathieu Gabut
- Stemness in Gliomas Laboratory, Cancer Initiation and Tumoral Cell Identity (CITI) Department, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France;
- Cancer Research Center of Lyon 1, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | | | - Vincent Guerlais
- CNRS, I3S, Université Côte d’Azur, 06560 Valbonne, France; (V.G.); (C.P.)
| | - Claude Pasquier
- CNRS, I3S, Université Côte d’Azur, 06560 Valbonne, France; (V.G.); (C.P.)
| | - Marie Luce Vignais
- CNRS, INSERM, Institut de Génomique Fonctionnelle, IGF, Université de Montpellier, 34090 Montpellier, France;
| | - Fabien Almairac
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, 06107 Nice, France
| | - Hervé Chneiweiss
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Marie-Pierre Junier
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Fanny Burel-Vandenbos
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- Service d’Anatomopathologie, Hôpital Pasteur, CHU de Nice, 06107 Nice, France
| | - Thierry Virolle
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| |
Collapse
|
6
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
7
|
Teraiya M, Perreault H, Chen VC. An overview of glioblastoma multiforme and temozolomide resistance: can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front Oncol 2023; 13:1166207. [PMID: 37182181 PMCID: PMC10169742 DOI: 10.3389/fonc.2023.1166207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent C. Chen
- Chemistry Department, Brandon University, Brandon, MB, Canada
| |
Collapse
|
8
|
Rosén E, Mangukiya HB, Elfineh L, Stockgard R, Krona C, Gerlee P, Nelander S. Inference of glioblastoma migration and proliferation rates using single time-point images. Commun Biol 2023; 6:402. [PMID: 37055469 PMCID: PMC10102065 DOI: 10.1038/s42003-023-04750-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Cancer cell migration is a driving mechanism of invasion in solid malignant tumors. Anti-migratory treatments provide an alternative approach for managing disease progression. However, we currently lack scalable screening methods for identifying novel anti-migratory drugs. To this end, we develop a method that can estimate cell motility from single end-point images in vitro by estimating differences in the spatial distribution of cells and inferring proliferation and diffusion parameters using agent-based modeling and approximate Bayesian computation. To test the power of our method, we use it to investigate drug responses in a collection of 41 patient-derived glioblastoma cell cultures, identifying migration-associated pathways and drugs with potent anti-migratory effects. We validate our method and result in both in silico and in vitro using time-lapse imaging. Our proposed method applies to standard drug screen experiments, with no change needed, and emerges as a scalable approach to screen for anti-migratory drugs.
Collapse
Affiliation(s)
- Emil Rosén
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Ludmila Elfineh
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Rebecka Stockgard
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Krona
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip Gerlee
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sven Nelander
- Dept of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Stevanovic M, Kovacevic-Grujicic N, Petrovic I, Drakulic D, Milivojevic M, Mojsin M. Crosstalk between SOX Genes and Long Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2023; 24:ijms24076392. [PMID: 37047365 PMCID: PMC10094781 DOI: 10.3390/ijms24076392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma (GBM) continues to be the most devastating primary brain malignancy. Despite significant advancements in understanding basic GBM biology and enormous efforts in developing new therapeutic approaches, the prognosis for most GBM patients remains poor with a median survival time of 15 months. Recently, the interplay between the SOX (SRY-related HMG-box) genes and lncRNAs (long non-coding RNAs) has become the focus of GBM research. Both classes of molecules have an aberrant expression in GBM and play essential roles in tumor initiation, progression, therapy resistance, and recurrence. In GBM, SOX and lncRNAs crosstalk through numerous functional axes, some of which are part of the complex transcriptional and epigenetic regulatory mechanisms. This review provides a systematic summary of current literature data on the complex interplay between SOX genes and lncRNAs and represents an effort to underscore the effects of SOX/lncRNA crosstalk on the malignant properties of GBM cells. Furthermore, we highlight the significance of this crosstalk in searching for new biomarkers and therapeutic approaches in GBM treatment.
Collapse
|
10
|
Silva FHDS, Underwood A, Almeida CP, Ribeiro TS, Souza-Fagundes EM, Martins AS, Eliezeck M, Guatimosim S, Andrade LO, Rezende L, Gomes HW, Oliveira CA, Rodrigues RC, Borges IT, Cassali GD, Ferreira E, Del Puerto HL. Transcription factor SOX3 upregulated pro-apoptotic genes expression in human breast cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:212. [PMID: 36175695 DOI: 10.1007/s12032-022-01758-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sex-determining region Y-box 3 (SOX3) protein, a SOX transcriptions factors group, has been identified as a key regulator in several diseases, including cancer. Downregulation of transcriptions factors in invasive ductal carcinoma (IDC) can interfere in neoplasia development, increasing its aggressiveness. We investigated SOX3 protein expression and its correlation with apoptosis in the MDA-MB-231 cell line, as SOX3 and Pro-Caspase-3 immunoexpression in paraffin-embedded invasive ductal carcinoma tissue samples from patients (n = 27). Breast cancer cell line MDA-MD-231 transfected with pEF1-SOX3 + and pEF1-Empty vector followed by cytotoxicity assay (MTT), Annexin-V FITC PI for apoptosis percentage assessment by flow cytometry, qPCR for apoptotic-related gene expression, immunofluorescence, and immunohistochemistry to SOX3 immunolocalization in culture cells, and paraffin-embedded invasive ductal carcinoma tissue samples. RESULTS Apoptotic rate was higher in cells transfected with pEF1-SOX3 + (56%) than controls (10%). MDA-MB-231 transfected with pEF1-SOX3 + presented upregulation of pro-apoptotic mRNA from CASP3, CASP8, CASP9, and BAX genes, contrasting with downregulation antiapoptotic mRNA from BCL2, compared to non-transfected cells and cells transfected with pEF1-empty vector (p < 0.005). SOX3 protein nuclear expression was detected in 14% (4/27 cases) of ductal carcinoma cases, and pro-Caspase-3 expression was positive in 50% of the cases. CONCLUSION Data suggest that SOX3 transcription factor upregulates apoptosis in breast cancer cell line MDA-MB-231, and has a down nuclear expression in ductal carcinoma cases, and need to be investigated as a tumor suppressor protein, and its loss of expression and non-nuclear action turn the cells resistant to apoptosis. Further studies are necessary to understand how SOX3 protein regulates the promoter regions of genes involved in apoptosis.
Collapse
Affiliation(s)
- Felipe Henrique de Souza Silva
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH, USA
| | - Camila Pereira Almeida
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Thais Salviana Ribeiro
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Elaine M Souza-Fagundes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marcos Eliezeck
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Luciana O Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Luisa Rezende
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Hipacia Werneck Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Isabella Terra Borges
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
11
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
12
|
LINC00662 Promotes Proliferation and Invasion and Inhibits Apoptosis of Glioma Cells Through miR-483-3p/SOX3 Axis. Appl Biochem Biotechnol 2022; 194:2857-2871. [PMID: 35275355 DOI: 10.1007/s12010-022-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
LINC00662 plays a prominent role in the carcinogenesis and progression of diverse cancers. However, its biological functions in glioma are still unclear. LINC00662 expression in glioma tissue samples and cell lines was examined by quantitative real-time polymerase chain reaction. The correlation between LINC00662 expression and the clinical characteristics of 50 patients with glioma was analyzed. LINC00662 knockdown and overexpression cell lines were constructed, and the effects of LINC00662 on the proliferation, invasion, and apoptosis of glioma cells were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, Transwell, and flow cytometry assays, respectively. Besides, the relationships among LINC00662, miR-483-3p, and sex-determining region Y-box 3 (SOX3) were assessed by dual-luciferase reporter assay and RNA immunoprecipitation assay. Western blot was used to detect the regulatory effects of LINC00662 and miR-483-3p on SOX3 expression in glioma cells. LINC00662 expression level was elevated in glioma tissues and cell lines compared to that in normal tissues and cell lines. LINC00662 high expression was associated with the adverse prognosis of patients with glioma. Knockdown of LINC00662 repressed the proliferation and invasion of glioma cells, and promoted apoptosis. Additionally, it was revealed that LINC00662 acted as the molecular sponge of miR-483-3p, and SOX3 was verified as a direct target of miR-483-3p. The inhibition of miR-483-3p expression and SOX3 overexpression reversed the biological effects of LINC00662 knockdown on glioma cells. This study reports the key regulatory role of LINC00662/miR-483-3p/SOX3 axis in the tumorigenesis and progression of glioma, bringing novel insights into the underlying mechanisms of glioma.
Collapse
|
13
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
14
|
Pan C, Liang L, Wang Z, Zhang B, Li Q, Tian Y, Yu Y, Chen Z, Wang X, Liu H. Expression and significance of SOX B1 genes in glioblastoma multiforme patients. J Cell Mol Med 2021; 26:789-799. [PMID: 34953010 PMCID: PMC8817144 DOI: 10.1111/jcmm.17120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
The overall survival of glioblastoma multiforme (GBM) patients remains poor. To improve patient outcomes, effective diagnostic and prognostic biomarkers for GBM are needed. In this study, we first applied bioinformatic analyses to identify biomarkers for GBM, focusing on SOX (sex‐determining region on the Y chromosome (SRY)‐related high mobility group (HMG) box) B1 family members. The ONCOMINE, GEPIA, LinkedOmics and CCLE databases were used to assess mRNA expression levels of the SOX B1 family members in different cancers and normal tissue. Further bioinformatic analysis was performed using the ONCOMINE database in combination with the LinkedOmics data set to identify the prognostic value of SOX B1 family members for GBM. We found mRNA expression levels of all tested SOX B1 genes were significantly increased in GBM. In the LinkedOmics database, increased expression of SOX3 indicated a better overall survival. In GEPIA databases, increased expression of all SOX B1 family members suggested an improved overall survival, but none of them were statistically different. Then, Transwell assays and wound healing were employed to evaluate the motility and invasive captivity of U251 cells when silencing SOX2 and SOX3. We found exogenous inhibition of SOX2 appeared to reduce the migration and invasion of U251 cells in vitro. Collectively, our research suggested that SOX2 might serve as a cancer‐promoting gene to identify high‐risk GBM patients, and SOX3 had the potential to be a prognostic biomarker for GBM patients.
Collapse
Affiliation(s)
- Cunyao Pan
- School of Public Health Lanzhou University, Lanzhou, China
| | - Lanlan Liang
- School of Public Health Lanzhou University, Lanzhou, China
| | - Zirou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Baoyi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qionglin Li
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yingrui Tian
- School of Public Health Lanzhou University, Lanzhou, China
| | - Yijing Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- School of Public Health Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
16
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
17
|
Scuderi SA, Lanza M, Casili G, Esposito F, Colarossi C, Giuffrida D, Irene P, Cuzzocrea S, Esposito E, Campolo M. TBK1 Inhibitor Exerts Antiproliferative Effect on Glioblastoma Multiforme Cells. Oncol Res 2021; 28:779-790. [PMID: 33741083 PMCID: PMC8420908 DOI: 10.3727/096504021x16161478258040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glioma are common malignant brain tumors, among which glioblastoma multiforme (GBM) has the worst prognosis. Different studies of GBM revealed that targeting nuclear factor B (NF-B) induced an attenuation tumor proliferation and prolonged cell survival. TBK1 {TANK [TRAF (TNF (tumor-necrosis-factor) receptor-associated factor)-associated NF-B activator]-binding kinase 1} is a serine/threonine protein kinase, and it is a member of the IB kinase (IKK) family involved in NF-B pathway activation. The aim of this study was to investigate the potential effect of BX795, an inhibitor of TBK1, in an in vitro and ex vivo model of GBM. GBM cell lines (U87 and U138) and primary GBM cells were treated with different concentrations of BX795 at different time points (24, 48, and 72h) to evaluate cell viability, autophagy, inflammation, and apoptosis. Our results demonstrated that BX795 10 M was able to reduce cell viability, showing antiproliferative effect in U87, U138, and primary GBM cells. Moreover, treatment with BX795 10 M increased the proapoptotic proteins Bax, p53, caspase 3, and caspase 9, whereas the antiapoptotic Bcl-2 expression was reduced. Additionally, our results showed a marked decrease in autophagy following BX795 treatment, reducing Atg 7, Atg 5/12, and AKT expression. The anti-inflammatory effect of BX795 was demonstrated by a significantly reduction in NIK, IKK, and TNF- expression, accompanied by a downregulation of angiogenesis. Furthermore, in primary GBM cell, BX795 10 M was able to reduce TBK1 pathway activation and SOX3 expression. In conclusion, these findings showed that TBK1 is involved in GBM proliferation, demonstrating that the inhibitor BX795, thanks to its abilities, could improve therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Sarah A. Scuderi
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | | | - Paterniti Irene
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
18
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
19
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
20
|
Jia X, Wei L, Zhang Z. NEAT1 Overexpression Indicates a Poor Prognosis and Induces Chemotherapy Resistance via the miR-491-5p/ SOX3 Signaling Pathway in Ovarian Cancer. Front Genet 2021; 12:616220. [PMID: 33995475 PMCID: PMC8118527 DOI: 10.3389/fgene.2021.616220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Accumulated studies have reported that dysregulated long non-coding RNAs (lncRNAs) are crucial in ovarian cancer (OC) initiation and development. However, detailed biological functions of lncRNA NEAT1 during the progression of OC remains to be uncovered. Purpose Our aim was to identify the role of NEAT1 in cisplatin resistance of ovarian cancer and the underlying mechanisms. Methods The expression patterns of NEAT1 in OC cell lines and tissue samples were identified by qRT-PCR. The cisplatin (DDP) sensitivity of OC cells was detected by MTT and CCK8 assay, while OC cell apoptosis and cell cycle were detected using flow cytometer assays. In addition, effects of NEAT1 on tumor growth were determined by xenograft tumor model. Luciferase reporter assay was conducted to prove the regulatory relation of miR-491-5p, NEAT1, and SOX3. Importantly, the expression of NEAT1 in exosomes from cisplatin-resistant patients was also determined by using qRT-PCR. Results In this study, upregulated NEAT1 was detected in OC cell lines and tissues. Meanwhile, NEAT1 was also increased in cisplatin-resistant OC cell lines and tissues. Upregulation of NEAT1 inhibited cisplatin-induced OC cell apoptosis and promoted cell proliferation, while knockdown of NEAT1 played the opposite role. These effects were also observed in vivo. Furthermore, direct interaction was observed between NEAT1 and miR-491-5p. NEAT1 led to the upregulation of miR-491-5p-targeted SOX3 mRNA. Importantly, this study also showed upregulated NEAT1 expression in serum exosomes derived from cisplatin-resistant patients. Conclusion NEAT1 is vital in the chemoresistance of ovarian cancer through regulating miR-491-5p/SOX3 pathway, showing that NEAT1 might be a potential target for OC resistance treatment.
Collapse
Affiliation(s)
- Xinzhuan Jia
- Department of Reproductive Medicine, The Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Lan Wei
- Department of Chest Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
22
|
Jin S, Li X, Dai Y, Li C, Wang D. NF-κB-mediated miR-650 plays oncogenic roles and activates AKT/ERK/NF-κB pathways by targeting RERG in glioma cells. Cell Oncol (Dordr) 2020; 43:1035-1048. [PMID: 32986146 DOI: 10.1007/s13402-020-00533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Glioma is the most common cancer in the central nervous system and has a high mortality rate. Despite advances that have been made in the treatment of glioma, its prognosis still remains poor. Dysregulation of miRNAs has been reported in many cancers, including glioma. Here, we set out to assess the role of miR-650 in glioma, including its diagnostic and therapeutic potential. METHODS miR-650 and RAS-like estrogen-regulated growth inhibitor (RERG) expression levels were analyzed using qRT-PCR in primary glioma tissues and cell lines. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, Western blotting, scratch wound healing, Transwell, adhesion, autophagy, immunofluorescence, luciferase reporter, electrophoretic mobility shift, tumor xenograft and flow cytometry assays were employed to investigate the mechanisms underlying the effect of miR-650 and RERG on glioma development. RESULTS miR-650 was found to be up-regulated in glioma tissues and cell lines compared to non-cancerous brain tissues and neural progenitor cells, respectively. We also found that miR-650 promoted cell proliferation, migration and invasion in glioma cells, and enhanced glioma tumor formation and growth in vivo. We identified and validated RERG as a direct target of miR-650. RERG was shown to act as a tumor suppressor in glioma cells, and its suppressor roles were rescued by miR-650. We found that nuclear factor (NF)-κB bound to the promoter of miR-650 and enhanced its expression. PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), as a co-factor of the RERG/PHLPP2 complex, mediated miR-650-induced activation of the protein kinase B/extracellular-signal-regulated kinase/NF-κB signaling pathways. CONCLUSIONS Our data revealed novel functional roles for miR-650 in glioma development and may provide new avenues for future clinical applications.
Collapse
Affiliation(s)
- Shiguang Jin
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,The Second Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xueping Li
- Nanjing Hospital Affiliated to Nanjing Medical University, The First Hospital of Nanjing, Nanjing, 210029, Jiangsu, China
| | - Yan Dai
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Cheng Li
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daxin Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
23
|
Shen J, Zhai J, Wu X, Xie G, Shen L. Serum proteome profiling reveals SOX3 as a candidate prognostic marker for gastric cancer. J Cell Mol Med 2020; 24:6750-6761. [PMID: 32363730 PMCID: PMC7299728 DOI: 10.1111/jcmm.15326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Searching for the novel tumour biomarkers is pressing for gastric cancer diagnostication and prognostication. The serum specimens from patients diagnosed with locally advanced gastric carcinoma before operation and 4 week after surgery were collected, respectively, and serum proteome profiling was conducted by liquid chromatography–mass spectrometry (MS)/MS. Fifty‐five proteins were identified to be up‐regulated and 16 proteins were down‐regulated, and these differentially expressed proteins participated in various biological processes. Serum levels of SOX3, one of down‐regulated proteins, in stomach cancer patients were higher than in healthy controls. SOX3 levels in cancer tissues were remarkably related to tumour differentiation, lymph node metastasis, primary tumour invasion and pTNM (pathological TNM) stage. Analysis with The Cancer Genome Atlas database indicated that SOX3 level and pTNM stage were the independent risk factors for the patient survival and that the overall survival was negatively associated with the SOX3 levels. Loss‐of‐function showed that SOX3 promoted gastric cancer cell invasion and migration in vitro and in vivo. SOX3 silence inhibits the expression of MMP9, and SOX3 is responsible for MMP9 expression transcriptionally. Our study highlights the potentiality of the paired pre‐ and post‐operation serum proteome signatures for the detection of biomarkers and reveals that SOX3 may serve as a candidate prognosis marker for gastric cancer.
Collapse
Affiliation(s)
- Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinqian Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guiping Xie
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Lu S, Yu Z, Zhang X, Sui L. MiR-483 Targeted SOX3 to Suppress Glioma Cell Migration, Invasion and Promote Cell Apoptosis. Onco Targets Ther 2020; 13:2153-2161. [PMID: 32210581 PMCID: PMC7075338 DOI: 10.2147/ott.s240619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Glioma is the most common malignant brain tumor that has high aggressiveness. The aim of this study was to investigate the potential therapeutic targets for gliomas. Materials and Methods Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to calculate the expression of miRNA and genes. The connection between the expression of miR-483 and patients' overall survival rate was evaluated using Kaplan-Meier analysis. In addition, the underlying mechanism was detected using luciferase assay. Results The expression level of miR-483 was significantly decreased in glioma tissue samples and cell lines, compared to the adjacent tissues and normal cell lines. Downregulation of miR-483 or upregulation of SOX3 was associated with overall survival of glioma patients. Additionally, overexpression of miR-483 promotes cell invasion and migration and inhibits apoptosis. In addition, miR-483 directly targeted to SOX3, and the expression of miR-483 has a negative correlation with SOX3 in glioma tissues. SOX3 reversed partial functions of miR-483 on cell migration, invasion, and promoted cell apoptosis in glioma. Conclusion MiR-483 inhibited glioma cell migration, invasion, and promoted glioma cell apoptosis by targeting SOX3. MiR-483 maybe acted as a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Shujing Lu
- Department of Critical Care Medicine, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong, People's Republic of China
| | - Zhengyang Yu
- Department of Internal Neurology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong, People's Republic of China
| | - Xia Zhang
- Department of Internal Neurology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong, People's Republic of China
| | - Lingling Sui
- Department of Internal Neurology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong, People's Republic of China
| |
Collapse
|
25
|
Wang B, Cao C, Liu X, He X, Zhuang H, Wang D, Chen B. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. Cell Oncol (Dordr) 2019; 43:223-235. [PMID: 31776938 DOI: 10.1007/s13402-019-00482-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE BRCA1-associated protein (BRAP) was first identified by its ability to bind to the nuclear localization signalling motif of BRCA1 and other proteins. Subsequently, human BRAP has been found to exert multiple functions, many of which are related to cancer development. Up till now, however, the role of BRAP in glioma development has remained obscure. Here, we report a role for BRAP in mediating the proliferation and migration of glioma cells both in vitro and in vivo. METHODS The expression of BRAP in 98 glioma patient samples was determined by immunohistochemistry, after which associations between BRAP expression and patient prognosis were assessed. A short hairpin RNA (shRNA) was used to knock down BRAP and an expression vector was used to exogenously overexpress BRAP in glioma cells. The effects of BRAP expression on tumour cell behaviour in vitro and in an in vivo xenograft mouse model were examined. RESULTS We found that in glioma patients BRAP expression was associated with a favourable prognosis. We also found that shRNA-mediated knockdown of BRAP facilitated the proliferation and migration of glioma cells and the self-renewal of glioma stem cells. In parallel, we found that BRAP knockdown increased tumour growth and invasion and decreased survival in an in vivo glioma xenograft mouse model. Mechanistically, we found that BRAP inhibited glioma cell proliferation and migration, as well as glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Together, our findings identify BRAP as a mediator of glioma cell proliferation, migration and glioma stem cell self-renewal.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, No.94 Weijin Road, Tianjin, 300071, China
| | - Chen Cao
- Department of Medical Imaging, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, No.6 Changjiang Road, Tianjin, 300100, China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450008, Henan Province, China.
| | - Dong Wang
- Department of Neurosurgery, General Hospital; Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System; Tianjin Neurological Institute, Tianjin Medical University, No.154 Anshan Road, Tianjin, 300052, China.
| | - Budong Chen
- Department of Neurosurgery, Tianjin Huanhu Hospital; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
26
|
Feng F, Zhang M, Yang C, Heng X, Wu X. The dual roles of autophagy in gliomagenesis and clinical therapy strategies based on autophagic regulation mechanisms. Biomed Pharmacother 2019; 120:109441. [PMID: 31541887 DOI: 10.1016/j.biopha.2019.109441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
Autophagy, a self-digestion intracellular catabolic process, plays a crucial role in cellular homeostasis under conditions of starvation, oxidative stress and genotoxic stress. The capability of maintaining homeostasis contributes to preventing malignant behavior in normal cells. Many studies have provided compelling evidence that autophagy is involved in brain tumor recurrence and chemotherapy and radiotherapy resistance. Gliomas, as the primary central nervous system (CNS) tumors, are characterized by rapid, aggressive growth and recurrence and have a poor prognosis and bleak outlook even with modern multimodality strategies involving maximal surgical resection, radiotherapy and alkylating agent-based chemotherapy. Autophagy-associated signaling pathways, such as the extracellular signal-regulated kinase1/2 (ERK1/2) pathway, class I phosphatidylinositol 3-phosphate kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and nuclear factor kappa-B (NF-κB) pathway, act as tumor suppressors or protect tumor cells against chemotherapy/radiotherapy-induced cytotoxicity in gliomagenesis. Through these pathways, both lethal autophagy and protective autophagy play crucial roles in tumor initiation, chemoresistance and glioma stem cell differentiation. Moreover, lethal autophagy and protective autophagy have been identified as novel therapeutic targets in glioma according to the mechanisms described above. Here, we discuss the multiple impacts of the autophagic response on distinct phases of gliomagenesis and the advanced progress of therapies based on this concept.
Collapse
Affiliation(s)
- Fan Feng
- Institute of Clinical Medicine College, Qingdao University, # 38, Dengzhou Road, Qingdao 266071, Shandong, China
| | - Moxuan Zhang
- Weifang Medical University, 261042, # 7166, Baotong Western Road, Weifang, Shandong, China
| | - Chuanchao Yang
- Weifang Medical University, 261042, # 7166, Baotong Western Road, Weifang, Shandong, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, # 27, Jiefang Eastern Road, Linyi 276000, Shandong, China.
| | - Xiujie Wu
- Department of Neurosurgery, Linyi People's Hospital, # 27, Jiefang Eastern Road, Linyi 276000, Shandong, China.
| |
Collapse
|
27
|
Bhatia S, Monkman J, Blick T, Duijf PH, Nagaraj SH, Thompson EW. Multi-Omics Characterization of the Spontaneous Mesenchymal-Epithelial Transition in the PMC42 Breast Cancer Cell Lines. J Clin Med 2019; 8:E1253. [PMID: 31430931 PMCID: PMC6723942 DOI: 10.3390/jcm8081253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal plasticity (EMP), encompassing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), are considered critical events for cancer metastasis. We investigated chromosomal heterogeneity and chromosomal instability (CIN) profiles of two sister PMC42 breast cancer (BC) cell lines to assess the relationship between their karyotypes and EMP phenotypic plasticity. Karyotyping by GTG banding and exome sequencing were aligned with SWATH quantitative proteomics and existing RNA-sequencing data from the two PMC42 cell lines; the mesenchymal, parental PMC42-ET cell line and the spontaneously epithelially shifted PMC42-LA daughter cell line. These morphologically distinct PMC42 cell lines were also compared with five other BC cell lines (MDA-MB-231, SUM-159, T47D, MCF-7 and MDA-MB-468) for their expression of EMP and cell surface markers, and stemness and metabolic profiles. The findings suggest that the epithelially shifted cell line has a significantly altered ploidy of chromosomes 3 and 13, which is reflected in their transcriptomic and proteomic expression profiles. Loss of the TGFβR2 gene from chromosome 3 in the epithelial daughter cell line inhibits its EMT induction by TGF-β stimulus. Thus, integrative 'omics' characterization established that the PMC42 system is a relevant MET model and provides insights into the regulation of phenotypic plasticity in breast cancer.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - James Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Pascal Hg Duijf
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| |
Collapse
|
28
|
Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V, Fornai F. The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme: From Cancer Promotion to Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20153824. [PMID: 31387280 PMCID: PMC6695733 DOI: 10.3390/ijms20153824] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor featuring rapid cell proliferation, treatment resistance, and tumor relapse. This is largely due to the coexistence of heterogeneous tumor cell populations with different grades of differentiation, and in particular, to a small subset of tumor cells displaying stem cell-like properties. This is the case of glioma stem cells (GSCs), which possess a powerful self-renewal capacity, low differentiation, along with radio- and chemo-resistance. Molecular pathways that contribute to GBM stemness of GSCs include mTOR, Notch, Hedgehog, and Wnt/β-catenin. Remarkably, among the common biochemical effects that arise from alterations in these pathways, autophagy suppression may be key in promoting GSCs self-renewal, proliferation, and pluripotency maintenance. In fact, besides being a well-known downstream event of mTOR hyper-activation, autophagy downregulation is also bound to the effects of aberrantly activated Notch, Hedgehog, and Wnt/β-catenin pathways in GBM. As a major orchestrator of protein degradation and turnover, autophagy modulates proliferation and differentiation of normal neuronal stem cells (NSCs) as well as NSCs niche maintenance, while its failure may contribute to GSCs expansion and maintenance. Thus, in the present review we discuss the role of autophagy in GSCs metabolism and phenotype in relationship with dysregulations of a variety of NSCs controlling pathways, which may provide novel insights into GBM neurobiology.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy
| | | | | | - Alessandro Frati
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy
| | - Vincenzo Esposito
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy
- Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy.
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
29
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|