1
|
Peñata-Taborda A, Espitia-Pérez P, Espitia-Pérez L, Coneo-Pretelt A, Brango H, Ricardo-Caldera D, Arteaga-Arroyo G, Jiménez-Vidal L, Galeano-Páez C, Pastor-Sierra K, Humanez-Alvarez A, Bru-Cordero O, Jones-Cifuentes N, Rincón-Orozco B, Mendez-Sanchez S, Negrette-Guzmán M. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. Int J Mol Sci 2025; 26:1013. [PMID: 39940782 PMCID: PMC11817897 DOI: 10.3390/ijms26031013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Considering the limitations of monotherapies due to chemoresistance and side effects, this research aimed to determine whether low doses of sulforaphane (SFN) combined with docetaxel (DCT) could enhance therapeutic efficacy. Prostate cancer cell lines LNCaP and PC-3 were treated with individual IC50 doses of SFN and DCT and half-reduced IC50 values for the SFN:DCT combination. Metabolic markers, including glucose consumption, lactate production, reactive oxygen species (ROS), mitochondrial mass, and caspase activity, were assessed. In LNCaP cells, the SFN:DCT combination reduced cell viability to 50%, comparable to DCT monotherapy (48%). Caspase 3 activation was also higher with SFN:DCT (2.4 ± 0.75 RFU) than DCT alone (2.1 ± 0.47 RFU), while caspase 8 activation remained comparable, indicating equivalent effectiveness at lower concentrations. In PC-3 cells, the combination induced caspase 3 activation (1.16 ± 0.0484 RFU) at levels slightly lower than DCT (1.51 ± 0.2062 RFU) but achieved greater reductions in mitochondrial mass, reflecting its ability to target metabolic vulnerabilities in aggressive phenotypes. Our findings suggest that the SFN:DCT combination is a promising strategy for early-stage prostate cancer. By achieving comparable efficacy to DCT monotherapy at low doses, the SFN:DCT combination maintains the therapeutic impact, mitigating the adverse effects of conventional DCT treatment.
Collapse
Affiliation(s)
- Ana Peñata-Taborda
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia;
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Osnamir Bru-Cordero
- Dirección Académica, Universidad Nacional de Colombia, Kilómetro 9, Vía Valledupar-La Paz, La Paz 202010, Colombia;
| | - Nathalia Jones-Cifuentes
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Bladimiro Rincón-Orozco
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Stelia Mendez-Sanchez
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Mario Negrette-Guzmán
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| |
Collapse
|
2
|
Fonseca LRS, Carreira RJP, Feijó M, Cavaco JEB, Cardoso HJ, Vaz CV, Figueira MI, Socorro S. Downregulated Regucalcin Expression Induces a Cancer-like Phenotype in Non-Neoplastic Prostate Cells and Augments the Aggressiveness of Prostate Cancer Cells: Interplay with the G Protein-Coupled Oestrogen Receptor? Cancers (Basel) 2024; 16:3932. [PMID: 39682121 DOI: 10.3390/cancers16233932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Regucalcin (RGN) is a calcium-binding protein and an oestrogen target gene, which has been shown to play essential roles beyond calcium homeostasis. Decreased RGN expression was identified in several cancers, including prostate cancer (PCa). However, it is unknown if the loss of RGN is a cause or a consequence of malignancy. Also, it needs confirmation if RGN oestrogenic regulation occurs through the G-protein-coupled oestrogen receptor (GPER). This study investigates how RGN knockdown affects prostate cell fate and metabolism and highlights the GPER/RGN interplay in PCa. METHODS Bioinformatic analysis assessed the relationship between RGN expression levels and patients' outcomes. RGN knockdown (siRNA) was performed in non-neoplastic prostate and castration-resistant PCa. Wild-type and RGN knockdown PCa cells were treated with the GPER agonist G1. Viability (MTT), proliferation (Ki-67 immunocytochemistry), apoptosis (caspase-3-like activity) and migration (Transwell assays) were evaluated. Spectrophotometric analysis was used to determine glucose consumption, lactate production and lactate dehydrogenase activity. Lipid content was assessed using the Oil Red assay. RESULTS/CONCLUSIONS Bioinformatic analysis showed that the loss of RGN correlates with the development of metastatic PCa and poor survival outcomes. RGN knockdown induced a cancer-like phenotype in PNT1A cells, indicated by increased cell viability and proliferation and reduced apoptosis. In DU145 PCa cells, RGN knockdown augmented migration and enhanced the glycolytic profile, which indicates increased aggressiveness, in line with patients' data. GPER activation modulated RGN expression in PCa cells and RGN knockdown in DU145 cells influenced GPER actions, which highlighted an interplay between these molecular players with relevance for their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Ricardo J P Carreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Mariana Feijó
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - José E B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Fu X, Wu H, Li C, Deng G, Chen C. YAP1 inhibits RSL3-induced castration-resistant prostate cancer cell ferroptosis by driving glutamine uptake and metabolism to GSH. Mol Cell Biochem 2024; 479:2415-2427. [PMID: 37773303 PMCID: PMC11371892 DOI: 10.1007/s11010-023-04847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
High levels of YAP1 and ferroptosis activation in castration-resistant prostate cancer (CRPC) can inhibit CRPC progression and improve its sensitivity toward chemotherapeutics drugs. However, whether YAP1 regulates ferroptosis in CRPC cells and the underlying mechanisms are unknown. The protein levels of YAP1, SLC1A5, and GLS1 in benign prostatic hyperplasia (BPH), prostate cancer (PCa) that did not progress to CRPC, and CRPC tissue samples were evaluated using western blotting. In PC-3 and DU-145 cells, YAP1 overexpression vector, small-interfering RNA, specific inhibitor verteporfin, ferroptosis-inducer RSL3, SLC1A5-inhibitor V-9302, and GLS1-inhibitor CB-839 were used. Immunofluorescence, flow cytometry, dual-luciferase reporter gene, and related kits were used to investigate the effect of YAP1 on the ferroptosis activity in CRPC cells and its underlying mechanisms. YAP1 promoted extracellular glutamine uptake and subsequent production of glutamate and glutathione (GSH), and increases the GPX4 activity. For the activation of ferroptosis by RSL3, YAP1 decreased the levels of reactive oxygen species, malondialdehyde, and lipid peroxidation, and the proportion of dead cells. Mechanistically, YAP1 promoted the expression of SCL1A5 and GLS1 and further increased the GSH levels and GPX4 activity. Thus, inhibiting SLC1A5 or GLS1 activity could alleviate the antagonistic effect of YAP1 on the ferroptosis of RSL3-induced CRPC cells. In CRPC, the YAP1 level is high, which enters the nucleus and promotes the expressions of SLC1A5 and GLS1, thereby promoting cellular glutamine uptake and metabolism to generate glutamate and further synthesizing GSH, increasing GPX4 activity, improving cellular antioxidant capacity, and inhibiting cell death.
Collapse
Affiliation(s)
- Xian Fu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshen Wu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Erb HHH, Polishchuk N, Stasyk O, Kahya U, Weigel MM, Dubrovska A. Glutamine Metabolism and Prostate Cancer. Cancers (Basel) 2024; 16:2871. [PMID: 39199642 PMCID: PMC11352381 DOI: 10.3390/cancers16162871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Nikita Polishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Uğur Kahya
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Matthias M. Weigel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01309 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Gonçalves J, Feijó M, Socorro S, Luís Â, Gallardo E, Duarte AP. The Role of Ayahuasca in Colorectal Adenocarcinoma Cell Survival, Proliferation and Oxidative Stress. Pharmaceuticals (Basel) 2024; 17:719. [PMID: 38931386 PMCID: PMC11207024 DOI: 10.3390/ph17060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The psychedelic beverage ayahuasca is originally obtained by Banisteriopsis caapi (B. caapi) (BC) and Psychotria viridis (P. viridis) (PV). However, sometimes these plant species are replaced by others that mimic the original effects, such as Mimosa hostilis (M. hostilis) (MH) and Peganum harmala (P. harmala) (PH). Its worldwide consumption and the number of studies on its potential therapeutic effects has increased. This study aimed to evaluate the anticancer properties of ayahuasca in human colorectal adenocarcinoma cells. Thus, the maximum inhibitory concentration (IC50) of decoctions of MH, PH, and a mixture of these (MHPH) was determined. The activities of caspases 3 and 9 were evaluated, and the cell proliferation index was determined through immunocytochemical analysis (Ki-67). Two fluorescent probes were used to evaluate the production of oxidative stress and the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was also evaluated. It was demonstrated that exposure to the extracts significantly induced apoptosis in Caco-2 cells, while decreasing cell proliferation. MH and MHPH samples significantly reduced oxidative stress and significantly increased glutathione peroxidase activity. No significant differences were found in SOD activity. Overall, it was demonstrated that the decoctions have a potential anticancer activity in Caco-2 cells.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Mariana Feijó
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
| | - Sílvia Socorro
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal; (J.G.); (M.F.); (S.S.); (E.G.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
7
|
Beier AMK, Ebersbach C, Siciliano T, Scholze J, Hofmann J, Hönscheid P, Baretton GB, Woods K, Guezguez B, Dubrovska A, Markowitsch SD, Thomas C, Puhr M, Erb HHH. Targeting the glutamine metabolism to suppress cell proliferation in mesenchymal docetaxel-resistant prostate cancer. Oncogene 2024; 43:2038-2050. [PMID: 38750263 PMCID: PMC11196217 DOI: 10.1038/s41388-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
Docetaxel (DX) serves as a palliative treatment option for metastatic prostate cancer (PCa). Despite initial remission, acquired DX resistance is inevitable. The mechanisms behind DX resistance have not yet been deciphered, but a mesenchymal phenotype is associated with DX resistance. Mesenchymal phenotypes have been linked to metabolic rewiring, obtaining most ATP production by oxidative phosphorylation (OXPHOS) powered substantially by glutamine (Gln). Likewise, Gln is known to play an essential role in modulating bioenergetic, redox homeostasis and autophagy. Herein, investigations of Gln deprivation on DX-sensitive and -resistant (DR) PCa cells revealed that the DR cell sub-lines were susceptible to Gln deprivation. Mechanistically, Gln deprivation reduced OXPHOS and ATP levels, causing a disturbance in cell cycle progression. Genetic and chemical inhibition of the Gln-metabolism key protein GLS1 could validate the Gln deprivation results, thereby representing a valid therapeutic target. Moreover, immunohistological investigation of GLS1 revealed a high-expressing GLS1 subgroup post-docetaxel failure, exhibiting low overall survival. This subgroup presents an intriguing opportunity for targeted therapy focusing on glutamine metabolism. Thus, these findings highlight a possible clinical rationale for the chemical inhibition of GLS1 as a therapeutic strategy to target mesenchymal DR PCa cells, thereby delaying accelerated tumour progression.
Collapse
Affiliation(s)
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Tiziana Siciliano
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Jana Scholze
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Jörg Hofmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Pia Hönscheid
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Kevin Woods
- IIIrd Department of Medicine - Hematology & Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Borhane Guezguez
- IIIrd Department of Medicine - Hematology & Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Dresden, Germany
| | - Sascha D Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Martin Puhr
- Medical University of Innsbruck, Department of Urology, 6020, Innsbruck, Austria
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Bhowmick N, Posadas E, Ellis L, Freedland SJ, Di Vizio D, Freeman MR, Theodorescu D, Figlin R, Gong J. Targeting Glutamine Metabolism in Prostate Cancer. Front Biosci (Elite Ed) 2023; 15:2. [PMID: 36959101 PMCID: PMC11983434 DOI: 10.31083/j.fbe1501002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023]
Abstract
Glutamine is a conditionally essential amino acid important for cancer cell proliferation through intermediary metabolism leading to de novo synthesis of purine and pyrimidine nucleotides, hexosamine biosytnehsis, fatty acid synthesis through reductive carboxylation, maintenance of redox homeostasis, glutathione synthesis, production of non-essential amino acids, and mitochondrial oxidative phosphorylation. Prostate cancer has increasingly been characterized as a tumor type that is heavily dependent on glutamine for growth and survival. In this review, we highlight the preclinical evidence that supports a relationship between glutamine signaling and prostate cancer progression. We focus on the regulation of glutamine metabolism in prostate cancer through key pathways involving the androgen receptor pathway, MYC, and the PTEN/PI3K/mTOR pathway. We end with a discussion on considerations for translation of targeting glutamine metabolism as a therapeutic strategy to manage prostate cancer. Here, it is important to understand that the tumor microenvironment also plays a role in facilitating glutamine signaling and resultant prostate cancer growth. The druggability of prostate cancer glutamine metabolism is more readily achievable with our greater understanding of tumor metabolism and the advent of selective glutaminase inhibitors that have proven safe and tolerable in early-phase clinical trials.
Collapse
Affiliation(s)
- Neil Bhowmick
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin Posadas
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Theodorescu
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Figlin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
12
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
13
|
Xu F, Shi J, Qin X, Zheng Z, Chen M, Lin Z, Ye J, Li M. Hormone-Glutamine Metabolism: A Critical Regulatory Axis in Endocrine-Related Cancers. Int J Mol Sci 2022; 23:ijms231710086. [PMID: 36077501 PMCID: PMC9456462 DOI: 10.3390/ijms231710086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The endocrine-related cancers and hormones are undoubtedly highly interconnected. How hormones support or repress tumor induction and progression has been extensively profiled. Furthermore, advances in understanding the role of glutamine metabolism in mediating tumorigenesis and development, coupled with these in-depth studies on hormone (e.g., estrogen, progesterone, androgen, prostaglandin, thyroid hormone, and insulin) regulation of glutamine metabolism, have led us to think about the relationship between these three factors, which remains to be elucidated. Accordingly, in this review, we present an updated overview of glutamine metabolism traits and its influence on endocrine oncology, as well as its upstream hormonal regulation. More importantly, this hormone/glutamine metabolism axis may help in the discovery of novel therapeutic strategies for endocrine-related cancer.
Collapse
Affiliation(s)
- Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Xueyun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Jiangfeng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
14
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
15
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Diaz-Romero C, Lopez-Basave HN, Duenas-Gonzalez A. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications. Curr Cancer Drug Targets 2022; 22:703-716. [DOI: 10.2174/1568009622666220413083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 12/09/2022]
Abstract
Background:
Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited.
Objective:
To provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade.
Methods:
A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review.
Results:
Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid -oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to
antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical, as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously blockade them to avoid or decrease the metabolic flexibility that may lead to treatment resistance.
Conclusions:
There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | - Alfonso Duenas-Gonzalez
- Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Fidelito G, Watt MJ, Taylor RA. Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality? Front Oncol 2022; 11:778761. [PMID: 35127483 PMCID: PMC8813754 DOI: 10.3389/fonc.2021.778761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer invokes major shifts in gene transcription and metabolic signaling to mediate alterations in nutrient acquisition and metabolic substrate selection when compared to normal tissues. Exploiting such metabolic reprogramming is proposed to enable the development of targeted therapies for prostate cancer, yet there are several challenges to overcome before this becomes a reality. Herein, we outline the role of several nutrients known to contribute to prostate tumorigenesis, including fatty acids, glucose, lactate and glutamine, and discuss the major factors contributing to variability in prostate cancer metabolism, including cellular heterogeneity, genetic drivers and mutations, as well as complexity in the tumor microenvironment. The review draws from original studies employing immortalized prostate cancer cells, as well as more complex experimental models, including animals and humans, that more accurately reflect the complexity of the in vivo tumor microenvironment. In synthesizing this information, we consider the feasibility and potential limitations of implementing metabolic therapies for prostate cancer management.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| | - Renea A. Taylor
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, Australia
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| |
Collapse
|
17
|
Circ-SFMBT2 drives the malignant phenotypes of esophageal cancer by the miR-107-dependent regulation of SLC1A5. Cancer Cell Int 2021; 21:495. [PMID: 34530825 PMCID: PMC8447765 DOI: 10.1186/s12935-021-02156-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Increasing studies focused on the regulatory roles of circular RNAs (circRNAs) in diverse cancers. This study was to evaluate the function and mechanism of circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) in esophageal cancer (EC). Methods The circ-SFMBT2, microRNA-107 (miR-107) and solute-linked carrier family A1 member 5 (SLC1A5) levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, colony formation assay and EdU assay. Cell apoptosis and invasion were detected by flow cytometry and transwell assay. Glutamine metabolism was assessed by the corresponding kits for glutamine consumption, α-ketoglutarate production and glutamate production. Western blot was used for protein quantification. The binding analysis was performed using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays. The functional research of circ-SFMBT2 in vivo was performed by xenograft tumor assay. Exosomes were identified by morphological observation and protein detection. Results Circ-SFMBT2 was overexpressed in EC samples and cells. Circ-SFMBT2 downregulation inhibited EC cell proliferation, invasion and glutamine metabolism. Circ-SFMBT2 targeted miR-107 and the regulation of circ-SFMBT2 was achieved by sponging miR-107. SLC1A5 was a target of miR-107, and it worked as an oncogene in EC cells. MiR-107 retarded the EC progression by downregulating SLC1A5. Circ-SFMBT2 could affect the SLC1A5 expression by targeting miR-107. Circ-SFMBT2 regulated EC progression in vivo by miR-107/SLC1A5 axis. Circ-SFMBT2 was transferred by exosomes in EC cells. Conclusion These results suggested that circ-SFMBT2 upregulated the SLC1A5 expression to promote the malignant development of EC by serving as a miR-107 sponge. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02156-8.
Collapse
|
18
|
Fonseca LRS, Silva GR, Luís Â, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. Sweet Cherries as Anti-Cancer Agents: From Bioactive Compounds to Function. Molecules 2021; 26:2941. [PMID: 34063349 PMCID: PMC8156356 DOI: 10.3390/molecules26102941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because of their organoleptic properties and nutritional value. The accurate phytochemical composition and nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in several phenolic compounds with relevant bioactivity. Over the years, technological advances in chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the detailed characterization of the sweet cherry bioactive phytonutrients and their biological function. In this context, the effect of sweet cherries on suppressing important events in the carcinogenic process, such as oxidative stress and inflammation, was widely documented. Interestingly, results from our research group and others have widened the action of sweet cherries to many hallmarks of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion and metastization, and metabolic alterations. Globally, this review highlights the prospective use of sweet cherries as a dietary supplement or in cancer treatment.
Collapse
Affiliation(s)
- Lara R. S. Fonseca
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Gonçalo R. Silva
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Ângelo Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Henrique J. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Sara Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Cátia V. Vaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Ana P. Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Sílvia Socorro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| |
Collapse
|