1
|
Zhang H, Zhang J, Zhu K, Li S, Liu J, Guan B, Zhang H, Chen C, Liu Y. Identification and characterization of mitochondrial autophagy-related genes in osteosarcoma and predicting clinical prognosis. Sci Rep 2025; 15:10158. [PMID: 40128298 PMCID: PMC11933398 DOI: 10.1038/s41598-025-95173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Osteosarcoma (OS), the most prevalent primary malignant bone tumor, is characterized by a poor prognosis and high metastatic potential. Mitochondrial autophagy has been implicated in cancer suppression. This study aimed to identify prognostic genes associated with mitochondrial autophagy in OS. Public datasets, including TARGET-OS, GSE99671, and GSE21257, were retrieved for analysis. Differentially expressed genes (DEGs1) between OS and normal samples were identified from GSE99671. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to quantify the enrichment scores of 29 mitochondrial autophagy-related genes (MARGs) in OS samples from TARGET-OS, categorizing them into high- and low-score groups to extract DEGs2. The intersection of DEGs1 and DEGs2 yielded mitochondrial autophagy-associated differentially expressed genes (MDGs). Prognostic genes were subsequently screened through a multi-step regression analysis, and a risk score was computed. TARGET-OS samples were stratified into high- and low-risk groups based on the optimal cutoff value of the risk score. GSEA was conducted between the two risk groups. Additionally, associations between prognostic genes and the immune microenvironment were explored. A total of 31 MDGs were identified from the overlap of 3,207 DEGs1 and 622 DEGs2. Five prognostic genes-KLK2, NRXN1, HES5, OR2W3, and HS3ST4-were further selected. Kaplan-Meier survival analysis indicated significantly reduced survival in the high-risk group. GSEA revealed enrichment in ABC transporter activity and glycolysis/gluconeogenesis pathways. Immunoanalysis demonstrated significant differences in 11 immune cell populations and three immune functions between risk groups, notably myeloid-derived suppressor cells (MDSCs) and Type 1 T helper cells. HS3ST4 exhibited the strongest positive correlation with macrophages, whereas NRXN1 showed the most pronounced negative correlation with memory B cells. Expressions of HAVCR2 and PDCD1LG2 were elevated in the low-risk group. Functional analysis indicated significant differences in dysfunction patterns between risk groups. This study identified five mitochondrial autophagy-related prognostic genes and constructed a risk model, offering novel insights into OS diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jingyu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Kai Zhu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Shuang Li
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jinwei Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Boya Guan
- Department of Pharmacy, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Hong Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Bang HJ, Shim HJ, Park MR, Yoon S, Yoo KH, Kim YK, Lee H, Nam JS, Hwang JE, Bae WK, Chung IJ, Sun EG, Cho SH. NRXN1 as a Prognostic Biomarker: Linking Copy Number Variation to EMT and Survival in Colon Cancer. Int J Mol Sci 2024; 25:11423. [PMID: 39518976 PMCID: PMC11546699 DOI: 10.3390/ijms252111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The role of biomarkers in cancer treatment varies significantly depending on the cancer stage. Thus, in clinical practice, tailoring biomarkers to meet the specific needs and challenges of each cancer stage can increase the precision of treatment. Because they reflect underlying genetic alterations that influence cancer progression, copy number variation (CNV) biomarkers can play crucial prognostic roles. In our previous study, we identified potential survival-related genes for colorectal cancer (CRC) by analyzing CNV and gene expression data using a machine-learning approach. To further investigate the biological function of NRXN1, we assessed the use of RNA sequencing, phosphokinase assays, real-time quantitative PCR, and Western blot analysis. We found that NRXN1 copy number deletion was significantly associated with poor overall survival (OS) and recurrence-free survival (RFS), even in patients who received adjuvant chemotherapy. Compared with its expression in normal tissues, NRXN1 expression was lower in tumors, suggesting its potential role as a tumor suppressor. NRXN1 knockdown enhanced CRC cell viability and invasion, and transcriptome analysis indicated that the increased invasion was caused by GSK3β-mediated epithelial-mesenchymal transition. These findings highlight NRXN1 copy number deletion as a novel biomarker for predicting recurrence and survival in patients with resected colon cancer.
Collapse
Affiliation(s)
- Hyun Jin Bang
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
| | - Hyun-Jeong Shim
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
| | - Mi-Ra Park
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
| | - Sumin Yoon
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (S.Y.); (K.H.Y.)
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (S.Y.); (K.H.Y.)
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea;
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Jun-Eul Hwang
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
| | - Woo-Kyun Bae
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Ik-Joo Chung
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Eun-Gene Sun
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang-Hee Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea; (H.J.B.); (H.-J.S.); (M.-R.P.); (J.-E.H.); (W.-K.B.); (I.-J.C.)
| |
Collapse
|
3
|
Smith KH, Trovillion EM, Sholler C, Gandra D, McKinney KQ, Mulama D, Dykema KJ, Nagulapally AB, Oesterheld J, Saulnier Sholler GL. Panobinostat Synergizes with Chemotherapeutic Agents and Improves Efficacy of Standard-of-Care Chemotherapy Combinations in Ewing Sarcoma Cells. Cancers (Basel) 2024; 16:3565. [PMID: 39518006 PMCID: PMC11545275 DOI: 10.3390/cancers16213565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The survival rate of patients with Ewing sarcoma (EWS) has seen very little improvement over the past several decades and remains dismal for those with recurrent or metastatic disease. HDAC2, ALK, JAK1, and CDK4 were identified as potential targets using RNA sequencing performed on EWS patient tumors with the bioinformatic analysis of gene expression. Methods/Results: The pan-HDAC inhibitor Panobinostat was cytotoxic to all the Ewing sarcoma cell lines tested. Mechanistically, Panobinostat decreases the expression of proteins involved in the cell cycle, including Cyclin D1 and phospho-Rb, and DNA damage repair, including CHK1. Further, Panobinostat induces a G1 cell cycle arrest. The combination of Panobinostat with Doxorubicin or Etoposide, both of which are used as standard of care in upfront treatment, leads to a synergistic effect in EWS cells. The combination of Panobinostat and Doxorubicin induces an accumulation of DNA damage, a decrease in the expression of DNA damage repair proteins CHK1 and CHK2, and an increase in caspase 3 cleavage. The addition of Panobinostat to standard-of-care chemotherapy combinations significantly reduces cell viability compared to that of chemotherapy alone. Conclusions: Overall, our data indicate that HDAC2 is overexpressed in many EWS tumor samples and HDAC inhibition is effective in targeting EWS cells, alone and in combination with standard-of-care chemotherapy agents. This work suggests that the addition of an HDAC inhibitor to upfront treatment may improve response.
Collapse
Affiliation(s)
- Kaitlyn H. Smith
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | | | - Chloe Sholler
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Divya Gandra
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Kimberly Q. McKinney
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - David Mulama
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Karl J. Dykema
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | - Abhinav B. Nagulapally
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, NC 28204, USA
| | | | - Giselle L. Saulnier Sholler
- Levine Children’s Hospital, Charlotte, NC 28203, USA; (E.M.T.)
- Penn State Hershey Children’s Hospital, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Green D, van Ewijk R, Tirtei E, Andreou D, Baecklund F, Baumhoer D, Bielack SS, Botchu R, Boye K, Brennan B, Capra M, Cottone L, Dirksen U, Fagioli F, Fernandez N, Flanagan AM, Gambarotti M, Gaspar N, Gelderblom H, Gerrand C, Gomez-Mascard A, Hardes J, Hecker-Nolting S, Kabickova E, Kager L, Kanerva J, Kester LA, Kuijjer ML, Laurence V, Lervat C, Marchais A, Marec-Berard P, Mendes C, Merks JH, Ory B, Palmerini E, Pantziarka P, Papakonstantinou E, Piperno-Neumann S, Raciborska A, Roundhill EA, Rutkauskaite V, Safwat A, Scotlandi K, Staals EL, Strauss SJ, Surdez D, Sys GM, Tabone MD, Toulmonde M, Valverde C, van de Sande MA, Wörtler K, Campbell-Hewson Q, McCabe MG, Nathrath M. Biological Sample Collection to Advance Research and Treatment: A Fight Osteosarcoma Through European Research and Euro Ewing Consortium Statement. Clin Cancer Res 2024; 30:3395-3406. [PMID: 38869831 PMCID: PMC11334773 DOI: 10.1158/1078-0432.ccr-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Osteosarcoma and Ewing sarcoma are bone tumors mostly diagnosed in children, adolescents, and young adults. Despite multimodal therapy, morbidity is high and survival rates remain low, especially in the metastatic disease setting. Trials investigating targeted therapies and immunotherapies have not been groundbreaking. Better understanding of biological subgroups, the role of the tumor immune microenvironment, factors that promote metastasis, and clinical biomarkers of prognosis and drug response are required to make progress. A prerequisite to achieve desired success is a thorough, systematic, and clinically linked biological analysis of patient samples, but disease rarity and tissue processing challenges such as logistics and infrastructure have contributed to a lack of relevant samples for clinical care and research. There is a need for a Europe-wide framework to be implemented for the adequate and minimal sampling, processing, storage, and analysis of patient samples. Two international panels of scientists, clinicians, and patient and parent advocates have formed the Fight Osteosarcoma Through European Research consortium and the Euro Ewing Consortium. The consortia shared their expertise and institutional practices to formulate new guidelines. We report new reference standards for adequate and minimally required sampling (time points, diagnostic samples, and liquid biopsy tubes), handling, and biobanking to enable advanced biological studies in bone sarcoma. We describe standards for analysis and annotation to drive collaboration and data harmonization with practical, legal, and ethical considerations. This position paper provides comprehensive guidelines that should become the new standards of care that will accelerate scientific progress, promote collaboration, and improve outcomes.
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Roelof van Ewijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Elisa Tirtei
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Dimosthenis Andreou
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Fredrik Baecklund
- Pediatric Oncology Unit, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Baumhoer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| | - Stefan S. Bielack
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Bernadette Brennan
- Paediatric Oncology, Royal Manchester Children’s Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom.
| | - Michael Capra
- Haematology/Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland.
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Franca Fagioli
- Pediatric Oncology, Regina Margherita Children’s Hospital, Turin, Italy.
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - Natalia Fernandez
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
| | - Adrienne M. Flanagan
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom.
- Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- U1015, Université Paris-Saclay, Villejuif, France.
| | - Hans Gelderblom
- Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Craig Gerrand
- Orthopaedic Oncology, The Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Anne Gomez-Mascard
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.
- EQ ONCOSARC, CRCT Inserm/UT3, ERL CNRS, Toulouse, France.
| | - Jendrik Hardes
- Tumour Orthopaedics, University Hospital Essen, German Cancer Consortium (DKTK) Site Essen, Cancer Research Center (NCT) Cologne-Essen, University of Duisburg-Essen, Essen, Germany.
| | - Stefanie Hecker-Nolting
- Center for Pediatric, Adolescent and Women’s Medicine, Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Centre, Stuttgart, Germany.
| | - Edita Kabickova
- Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic.
| | - Leo Kager
- Pediatrics, St Anna Children’s Hospital, Medical University Vienna, Vienna, Austria.
- St Anna Children’s Cancer Research Institute, Vienna, Austria.
| | - Jukka Kanerva
- Hematology-Oncology and Stem Cell Transplantation, HUS Helsinki University Hospital, New Children’s Hospital, Helsinki, Finland.
| | - Lennart A. Kester
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Marieke L. Kuijjer
- Computational Biology and Systems Medicine Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
- Pathology, Leiden University Medical Center, Leiden, the Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Cyril Lervat
- Department of Pediatrics and AYA Oncology, Centre Oscar Lambret, Lille, France.
| | - Antonin Marchais
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
| | - Perrine Marec-Berard
- Institute of Hematology and Pediatric Oncology, Léon Bérard Center, Lyon, France.
| | - Cristina Mendes
- Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.
| | - Johannes H.M. Merks
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Benjamin Ory
- School of Medicine, Nantes Université, Nantes, France.
| | - Emanuela Palmerini
- Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Orthopedico Rizzoli, Bologna, Italy.
| | - Pan Pantziarka
- Patient and Parent Advocacy Group, FOSTER, Washington, District of Columbia.
- Anticancer Fund, Meise, Belgium.
- The George Pantziarka TP53 Trust, London, United Kingdom.
| | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece.
| | | | - Anna Raciborska
- Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Warsaw, Poland.
| | - Elizabeth A. Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Vilma Rutkauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Akmal Safwat
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Eric L. Staals
- Orthopaedics and Trauma, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Sandra J. Strauss
- Department of Oncology, University College London Hospitals NHS Foundation Trust, UCL Cancer Institute, London, United Kingdom.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland.
| | - Gwen M.L. Sys
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, Belgium.
| | - Marie-Dominique Tabone
- Department of Hematology and Oncology, A. Trousseau Hospital, Sorbonne University, APHP, Paris, France.
| | - Maud Toulmonde
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Claudia Valverde
- Medical Oncology, Vall d’Hebron University Hospital, Barcelona, Spain.
| | | | - Klaus Wörtler
- Musculoskeletal Radiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Quentin Campbell-Hewson
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Martin G. McCabe
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom.
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Michaela Nathrath
- Children’s Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany.
| |
Collapse
|
5
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
6
|
Fayzullina D, Yakushov S, Kantserova K, Belyaeva E, Aniskin D, Tsibulnikov S, Fayzullina N, Kalinin S, Romantsova O, Timashev PS, Schroeder BA, Ulasov IV. Carbonic Anhydrase Inhibitors Induce Ferroptosis through Inhibition of AKT/FTH1 Signaling in Ewing Sarcoma Tumor Cells. Cancers (Basel) 2023; 15:5225. [PMID: 37958399 PMCID: PMC10650537 DOI: 10.3390/cancers15215225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Ewing sarcoma (ES) is one of the most frequent types of malignant tumors among children. The active metabolic state of ES cells presents a new potential target for therapeutic interventions. As a primary regulator of cellular homeostasis, carbonic anhydrases (CAs; EC 4.2.1.1) have emerged as promising molecular targets for the development of anticancer drugs. Within the present study, we tested the commercial drug acetazolamide and our previously discovered inhibitors to target the CAII isoform, which was overexpressed and positively correlated with ES patient relapse. We employed molecular biology tests to identify effective inhibitors of CAII that can induce ferroptosis by downregulating FTH1 expression in ES cells. In vitro, we have also demonstrated their ability to reduce cell proliferation, decrease invasion, and induce apoptosis- or autophagy-related cell death. Using Western blotting, we confirmed the induction of cathepsin B in cells treated with CA inhibitors. It was found that the suppression of cathepsin B expression during the treatment reduces the anticancer efficacy of selected CAII inhibitors. These experiments highlighted profound antitumor activity of CAII inhibitors attributive to their remarkable ability to trigger ferroptosis in Ewing sarcoma cells without causing substantial host damage. The obtained results suggest that cytosolic CAII may be a prospective target for ES treatment, and CAII inhibitors can be considered as potential single-agent or combination antitumor agents to be used in the treatment of ES.
Collapse
Affiliation(s)
- Darya Fayzullina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Semyon Yakushov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Kamilla Kantserova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| | - Nafisa Fayzullina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Stanislav Kalinin
- Department of Chemistry, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia;
| | - Peter S. Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Brett A. Schroeder
- National Cancer Institute, Center for Cancer Research, Bethesda, MD 20814, USA;
| | - Ilya V. Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.F.); (S.Y.); (K.K.); (E.B.); (D.A.); (S.T.)
| |
Collapse
|
7
|
Daher M, Zalaquett Z, Chalhoub R, Abi Farraj S, Abdo M, Sebaaly A, Kourie HR, Ghanem I. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review. J Bone Oncol 2023; 40:100482. [PMID: 37180735 PMCID: PMC10173001 DOI: 10.1016/j.jbo.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
With an annual incidence of less than 1%, Ewing sarcoma mainly occurs in children and young adults. It is not a frequent tumor but is the second most common bone malignancy in children. It has a 5-year survival rate of 65-75%; however, it has a poor prognosis when it relapses in patients. A genomic profile of this tumor can potentially help identify poor prognosis patients earlier and guide their treatment. A systematic review of the articles concerning genetic biomarkers in Ewing sarcoma was conducted using the Google Scholar, Cochrane, and PubMed database. There were 71 articles discovered. Numerous diagnostic, prognostic, and predictive biomarkers were found. However, more research is necessary to confirm the role of some of the mentioned biomarkers. .
Collapse
Affiliation(s)
- Mohammad Daher
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
- Corresponding author at: Hotel Dieu de France, Beirut, Lebanon.
| | - Ziad Zalaquett
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ralph Chalhoub
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Sami Abi Farraj
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Majd Abdo
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Amer Sebaaly
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig-Raphaël Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ismat Ghanem
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
8
|
Roundhill EA, Pantziarka P, Liddle DE, Shaw LA, Albadrani G, Burchill SA. Exploiting the Stemness and Chemoresistance Transcriptome of Ewing Sarcoma to Identify Candidate Therapeutic Targets and Drug-Repurposing Candidates. Cancers (Basel) 2023; 15:cancers15030769. [PMID: 36765727 PMCID: PMC9913297 DOI: 10.3390/cancers15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Outcomes for most patients with Ewing sarcoma (ES) have remained unchanged for the last 30 years, emphasising the need for more effective and tolerable treatments. We have hypothesised that using small-molecule inhibitors to kill the self-renewing chemotherapy-resistant cells (Ewing sarcoma cancer stem-like cells; ES-CSCs) responsible for progression and relapse could improve outcomes and minimise treatment-induced morbidities. For the first time, we demonstrate that ABCG1, a potential oncogene in some cancers, is highly expressed in ES-CSCs independently of CD133. Using functional models, transcriptomics and a bespoke in silico drug-repurposing pipeline, we have prioritised a group of tractable small-molecule inhibitors for further preclinical studies. Consistent with the cellular origin of ES, 21 candidate molecular targets of pluripotency, stemness and chemoresistance were identified. Small-molecule inhibitors to 13 of the 21 molecular targets (62%) were identified. POU5F1/OCT4 was the most promising new therapeutic target in Ewing sarcoma, interacting with 10 of the 21 prioritised molecular targets and meriting further study. The majority of small-molecule inhibitors (72%) target one of two drug efflux proteins, p-glycoprotein (n = 168) or MRP1 (n = 13). In summary, we have identified a novel cell surface marker of ES-CSCs and cancer/non-cancer drugs to targets expressed by these cells that are worthy of further preclinical evaluation. If effective in preclinical models, these drugs and drug combinations might be repurposed for clinical evaluation in patients with ES.
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| | - Pan Pantziarka
- Anticancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
| | - Danielle E. Liddle
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lucy A. Shaw
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Ghadeer Albadrani
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Susan Ann Burchill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| |
Collapse
|
9
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Hong B, Li Y, Yang R, Dai S, Zhan Y, Zhang WB, Dong R. Single-cell transcriptional profiling reveals heterogeneity and developmental trajectories of Ewing sarcoma. J Cancer Res Clin Oncol 2022; 148:3267-3280. [PMID: 35713707 DOI: 10.1007/s00432-022-04073-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Ewing sarcoma (EwS) is an aggressive malignant neoplasm composed of small round cells. The heterogeneity and developmental trajectories of EwS are uncertain. METHODS Single-cell RNA sequencing was performed on 4 EwS tumor tissue samples, and 3 transcriptional atlases were generated. K-nearest neighbor algorithm was used to predict the origin of tumor cells at single-cell resolution. Monocle2 package was used to perform pseudotime trajectory analysis in tumor cells. Differentially expressed genes were compared against those in all other clusters via the FindMarkers function, and then they were subjected to GO analysis using clusterProfiler package. RESULTS Combined with the results of k-nearest neighbor algorithm and pseudotime trajectory analysis in tumor cells, we thought meningeal EwS originated from neural crest cells during epithelial to mesenchymal transition and simulated the process of neural crest cell lineage differentiation. But for perirenal EwS and spinal EwS, we hypothesized that after the neural crest cell lineage mutated into them, the tumor cells did not maintain the differentiation trajectory of neural crest cell lineage, and the development trajectory of tumor cells became chaotic. GO analysis results showed that interferon signaling pathway-related biological processes play an essential role in the tumorigenesis and tumor progression process of EwS, and among these biological processes genes, JAK1 gene up-regulated most significantly and highly expressed in all tumor cells. Ruxolitinib was used to explore the function of JAK1. Targeting JAK1 can promote apoptosis of EwS tumor cells, inhibit the migration and invasion of EwS tumor cells, and inhibit cell proliferation by inducing cell cycle S phase arrest. CONCLUSION EwS was derived from neural crest cell lineage with variable developmental timing of oncogenic conversion, and the JAK1 might be a candidate for therapeutic targets of EwS.
Collapse
Affiliation(s)
- Bo Hong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - ShuYang Dai
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Wen-Bo Zhang
- Department of Pediatric Thoracic Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Rui Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|