1
|
Zhou K, Liu Y, Tang C, Zhu H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm (Beijing) 2025; 6:e70162. [PMID: 40182139 PMCID: PMC11965705 DOI: 10.1002/mco2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy, with pancreatic ductal adenocarcinoma (PDAC) being the most common and aggressive subtype, characterized by late diagnosis, aggressive progression, and resistance to conventional therapies. Despite advances in understanding its pathogenesis, including the identification of common genetic mutations (e.g., KRAS, TP53, CDKN2A, SMAD4) and dysregulated signaling pathways (e.g., KRAS-MAPK, PI3K-AKT, and TGF-β pathways), effective therapeutic strategies remain limited. Current treatment modalities including chemotherapy, targeted therapy, immunotherapy, radiotherapy, and emerging therapies such as antibody-drug conjugates (ADCs), chimeric antigen receptor T (CAR-T) cells, oncolytic viruses (OVs), cancer vaccines, and bispecific antibodies (BsAbs), face significant challenges. This review comprehensively summarizes these treatment approaches, emphasizing their mechanisms, limitations, and potential solutions, to overcome these bottlenecks. By integrating recent advancements and outlining critical challenges, this review aims to provide insights into future directions and guide the development of more effective treatment strategies for PC, with a specific focus on PDAC. Our work underscores the urgency of addressing the unmet needs in PDAC therapy and highlights promising areas for innovation in this field.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yingping Liu
- Department of RadiotherapyCancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Chuanyun Tang
- The First Clinical Medical College of Nanchang UniversityNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Shang G, Zhang W, Jia Y, Ji D, Wei E, Gao C, Zeng C, Wang C, Liu N, Ge P, Li Y, Zeng L. GAS41 promotes ITGA4-mediated PI3K/Akt/mTOR signaling pathway and glioma tumorigenesis. Biochem Pharmacol 2025; 233:116747. [PMID: 39788387 DOI: 10.1016/j.bcp.2025.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Glioma Amplified Sequence 41 (GAS41) is a chromatin-associated protein that belongs to the YEATS domain family of proteins and is frequently amplified in various tumors. However, its biological function and carcinogenic mechanism in gliomas are not fully understood. In this study, we revealed that GAS41 was upregulated in human glioma tissues and cell lines, and higher expression of GAS41 was significantly associated with poor clinical prognosis. Genetic depletion and chemical inhibition of GAS41 remarkably inhibited glioma cell proliferation and metastasis abilities and induced cellular apoptosis. Furthermore, functional annotation identified that GAS41 was involved in stimulating the expression of membrane protein ITGA4 to activate the downstream PI3K/Akt/mTOR signaling pathway in glioma cell lines. In addition, we synthesized and evaluated a series of small molecules targeting the GAS41 YEATS domain, which yielded effective anti-proliferative activities in glioma cells. Molecular docking revealed that these compounds bound to the GAS41 YEATS domain pocket in a manner similar to Compounds 9 and 3b, providing a structural basis for exploring the selective inhibition of GAS41 as part of an essential molecular framework. Overall, our study illustrates the crucial role of GAS41 in glioma progression and the malignant phenotype and suggests that targeting GAS41 may be a promising therapeutic treatment strategy for gliomas.
Collapse
Affiliation(s)
- Guanglei Shang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caroline Zeng
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Nan Liu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
4
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Hara T, Meng S, Sato H, Tatekawa S, Sasaki K, Takeda Y, Tsuji Y, Arao Y, Ofusa K, Kitagawa T, Yamada D, Takahashi H, Kobayashi S, Motooka D, Suzuki Y, Rennie S, Uchida S, Mori M, Ogawa K, Doki Y, Eguchi H, Ishii H. High N6-methyladenosine-activated TCEAL8 mRNA is a novel pancreatic cancer marker. Cancer Sci 2024; 115:2360-2370. [PMID: 38659235 PMCID: PMC11247549 DOI: 10.1111/cas.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 04/26/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.
Collapse
Affiliation(s)
- Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shotaro Tatekawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yu Takeda
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Prophoenix DivisionFood and Life‐Science Laboratory, IDEA Consultants, Inc.OsakaOsakaJapan
| | - Toru Kitagawa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
- Kyowa‐kai Medical CorporationKawanishiHyogoJapan
| | - Daisaku Yamada
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial DiseasesOsaka UniversitySuitaOsakaJapan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwa‐shiChibaJapan
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA MedicineAalborg UniversityCopenhagen SVDenmark
| | - Masaki Mori
- Tokai University Graduate School of MedicineIseharaKanagawaJapan
| | - Kazuhiko Ogawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| |
Collapse
|
6
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Yang L, Ruan Y, Xu H. HIST3H2A promotes the progression of prostate cancer through inhibiting cell necroptosis. BMC Cancer 2024; 24:544. [PMID: 38684944 PMCID: PMC11059659 DOI: 10.1186/s12885-024-12308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, there has been an increase in the incidence and mortality rates of prostate cancer (PCa). However, the specific molecular mechanisms underlying its occurrence and development remain unclear, necessitating the identification of new therapeutic targets. Through bioinformatics analysis, we discovered a previously unstudied differential gene called HIST3H2A in prostate cancer. Our study revealed that HIST3H2A is highly expressed in PCa tissues, as confirmed by analysis of both the GEO and UALCAN databases. Further analysis using the KEGG database demonstrated that HIST3H2A regulates the pathway of programmed necroptosis in cells. Additionally, we observed significant up-regulation of HIST3H2A in PCa tissues and cell lines. HIST3H2A was found to regulate cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process in tumors. Notably, HIST3H2A's role in regulating programmed necroptosis in prostate cancer cells differs from its role in apoptosis. In vitro and in vivo experiments collectively support the key role of HIST3H2A in promoting the development of prostate cancer, highlighting its potential as a therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Lihong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Xiang S, Jian L, Zeng H, Wu H, Ge B, Zhang P, Lin J, Guo A, Zhou B. Isoliquiritigenin suppresses the progression of malignant melanoma via targeting H2A.Z.1-E2F1 pathway. Biochem Pharmacol 2023; 218:115859. [PMID: 37863326 DOI: 10.1016/j.bcp.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous melanoma is one of the most prevalent tumors, and it is still a huge challenge in the current clinical treatment. Isoliquiritigenin (ISL), which is isolated from Glycyrrhiza uralensis Fisch., has been reported for its anti-tumor effect. However, the underlying mechanism and targets of ISL are still not be revealed clearly. In this study, differentiallyexpressedproteins were identified bylabel-free quantitative mass spectrometry. Two isoforms of the histone variant H2A.Z, including H2A.Z.1 and H2A.Z.2, were significantly down regulated after administration of ISL in melanoma. H2A.Z.1 was highly expressed in melanoma and correlated with poor prognosis of melanoma. The expression of H2A.Z was inhibited by ISL in a concentration-dependent manner. Overexpression of H2A.Z.1 in melanoma cell lines partly restored the repressed cell proliferation and cell cycle by ISL. Moreover, E2F1 was identified as one downstream target of H2A.Z.1, which was also highly expressed in melanoma and correlated with poor prognosis of melanoma. Furthermore, in vivo assays validated the inhibitory role of ISL in melanoma proliferation and the expression of H2A.Z.1 and E2F1.Aboveall,it is indicated that ISL inhibit melanoma proliferation via targeting H2A.Z.1-E2F1 pathway. These findings explain the anti-tumor mechanism of ISL and provide potential therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Lina Jian
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Haiyan Zeng
- Clinical Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Huixing Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Bingchen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Pujie Zhang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Jian Lin
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| | - Aoxiang Guo
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
10
|
Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: a cancer perspective. Front Genet 2023; 14:1290903. [PMID: 38075697 PMCID: PMC10702394 DOI: 10.3389/fgene.2023.1290903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 07/29/2024] Open
Abstract
Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term "oncohistones." At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
11
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
12
|
Yang L, Wang H, Guo M, He M, Zhang W, Zhan M, Liu Y. ELF3 promotes gemcitabine resistance through PKMYT1/CDK1 signaling pathway in gallbladder cancer. Cell Oncol (Dordr) 2023; 46:1085-1095. [PMID: 36988891 DOI: 10.1007/s13402-023-00799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Gemcitabine is the standard treatment for gallbladder cancer (GBC) patients, and the development of resistance frequently limits its efficacy. However, the molecular features and mechanisms of gemcitabine resistance (Gem-R) in GBC cells remain unknown. Herein, we aimed to explore the role of ELF3 in Gem-R of GBC, including the underlying mechanisms. METHODS RNA sequencing was used to screen the essential genes related to the generation of Gem-R in GBC tissues. The correlation between Gem-R and ELF3 expression was identified in GDSC, GEO database, GBC tissues, and 3 GBC cell lines. Immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blot were used to examine the expression of ELF3, PKMYT1, and CDK1. Luciferase reporter assays were used to identify the binding site of ELF3 in the PKMYT1 promoter region. CCK-8 assay and clonogenic survival assays were used to evaluate the sensitivity of gemcitabine in GBC cells. A GBC xenograft model was used to evaluate the influence of ELF3 on the therapeutic effect of gemcitabine. RESULTS A consistently positive correlation between ELF3 expression and Gem-R, both in newly generated GBC RNA-seq data and in the datasets from GDSC and GEO. Gem-R in GBC cells was facilitated by ELF3 overexpression, whereas ELF3 knockdown had the opposite effect. In vivo experiments further proved that reducing ELF3 expression promoted the gemcitabine sensitivity of GBC cells and extended the survival time of mice that received orthotopic xenografted tumors. Mechanistically, ELF3 upregulated PKMYT1 expression by interacting with the DNA binding region of PKMYT1 in GBC cells, thereby promoting the phosphorylation of CDK1 and inducing Gem-R. Treatment with a combination of the PKMYT1 shRNA and gemcitabine significantly reduced the growth of GBC cells induced by overexpression of ELF3 in vitro and in vivo. CONCLUSIONS ELF3/PKMYT1/CDK1 axis significantly regulates Gem-R to GBC cells and may represent a promising drug target for treating GBC patients.
Collapse
Affiliation(s)
- Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200011, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200011, China
| | - Wei Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200011, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200011, China.
| |
Collapse
|
13
|
Xian Q, Song Y, Gui C, Zhou Y. Mechanistic insights into genomic structure and functions of a novel oncogene YEATS4. Front Cell Dev Biol 2023; 11:1192139. [PMID: 37435030 PMCID: PMC10332269 DOI: 10.3389/fcell.2023.1192139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
As a novel oncogene, the role of YEATS domain-containing protein 4 (YEATS4) in the occurrence, development, and treatment of tumors is now beginning to be appreciated. YEATS4 plays an important role in regulating DNA repair during replication. The upregulation of YEAST4 promotes DNA damage repair and prevents cell death, whereas its downregulation inhibits DNA replication and induces apoptosis. Additionally, accumulating evidence indicates that the aberrant activation of YEATS4 leads to changes in drug resistance, epithelial-mesenchymal transition and also in the migration and invasion capacity of tumor cells. Therefore, specific inhibition of the expression or activity of YEATS4 protein may be an effective strategy for inhibiting the proliferation, motility, differentiation, and/or survival of tumor cells. Taken together, YEATS4 has emerged as a potential target for multiple cancers and is an attractive protein for the development of small-molecule inhibitors. However, research on YEAST4 in tumor-related fields is limited and its biological functions, metabolism, and the regulatory mechanism of YEATS4 in numerous cancers remain undetermined. This review comprehensively and extensively summarizes the functions, structure and oncogenic roles of YEATS4 in cancer progression and aims to further contribute to the study of its underlying molecular mechanism and targeted drugs.
Collapse
Affiliation(s)
- Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Yiying Song
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|