1
|
Abou-Shanab AM, Gaser OA, Soliman MW, Oraby A, Salah RA, Gabr M, Edris AAF, Mohamed I, El-Badri N. Human amniotic membrane scaffold enhances adipose mesenchymal stromal cell mitochondrial bioenergetics promoting their regenerative capacities. Mol Cell Biochem 2025; 480:2611-2632. [PMID: 39453499 DOI: 10.1007/s11010-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024]
Abstract
The human amniotic membrane (hAM) has been applied as a scaffold in tissue engineering to sustain stem cells and enhance their regenerative capacities. We investigated the molecular and biochemical regulations of mesenchymal stromal cells (MSCs) cultured on hAM scaffold in a three-dimensional (3D) setting. Culture of adipose-MSCs (AMSCs) on decellularized hAM showed significant improvement in their viability, proliferative capacity, resistance to apoptosis, and enhanced MSC markers expression. These cultured MSCs displayed altered expression of markers associated with pro-angiogenesis and inflammation and demonstrated increased potential for differentiation into adipogenic and osteogenic lineages. The hAM scaffold modulated cellular respiration by upregulating glycolysis in MSCs as evidenced by increased glucose consumption, cellular pyruvate and lactate production, and upregulation of glycolysis markers. These metabolic changes modulated mitochondrial oxidative phosphorylation (OXPHOS) and altered the production of reactive oxygen species (ROS), expression of OXPHOS markers, and total antioxidant capacity. They also significantly boosted the urea cycle and altered the mitochondrial ultrastructure. Similar findings were observed in bone marrow-derived MSCs (BMSCs). Live cell imaging of BMSCs cultured in the same 3D environment revealed dynamic changes in cellular activity and interactions with its niche. These findings provide evidence for the favorable properties of hAM as a biomimetic scaffold for enhancing the in vitro functionality of MSCs and supporting their potential usefulness in clinical applications.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Alaa Oraby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
2
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025:1-23. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Farzamfar S, Garcia LM, Rahmani M, Bolduc S. Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs. Bioengineering (Basel) 2024; 11:494. [PMID: 38790361 PMCID: PMC11118848 DOI: 10.3390/bioengineering11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Luciana Melo Garcia
- Department of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
- Hematology-Oncology Service, CHU de Québec—Université Laval, Québec, QC G1V 0A6, Canada
| | - Mahya Rahmani
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Stephane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Zamani S, Salehi M, Ehterami A, Fauzi MB, Abbaszadeh-Goudarzi G. Assessing the efficacy of curcumin-loaded alginate hydrogel on skin wound healing: A gene expression analysis. J Biomater Appl 2024; 38:957-974. [PMID: 38453252 DOI: 10.1177/08853282241238581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Skin tissue engineering has gained significant attention as a promising alternative to traditional treatments for skin injuries. In this study, we developed 3D hydrogel-based scaffolds, Alginate, incorporating different concentrations of Curcumin and evaluated their properties, including morphology, swelling behavior, weight loss, as well as hemo- and cytocompatibility. Furthermore, we investigated the therapeutic potential of Alginate hydrogel containing different amounts of Curcumin using an in vitro wound healing model. The prepared hydrogels exhibited remarkable characteristics, SEM showed that the pore size of hydrogels was 134.64 μm with interconnected pores, making it conducive for cellular infiltration and nutrient exchange. Moreover, hydrogels demonstrated excellent biodegradability, losing 63.5% of its weight over 14 days. In addition, the prepared hydrogels had a stable release of curcumin for 3 days. The results also show the hemocompatibility of prepared hydrogels and a low amount of blood clotting. To assess the efficacy of the developed hydrogels, 3T3 fibroblast growth was examined during various incubation times. The results indicated that the inclusion of Curcumin at a concentration of 0.1 mg/mL positively influenced cellular behavior. The animal study showed that Alginate hydrogel containing 0.1 mg/mL curcumin had high wound closure(more than 80%) after 14 days. In addition, it showed up-regulation of essential wound healing genes, including TGFβ1 and VEGF, promoting tissue repair and angiogenesis. Furthermore, the treated group exhibited down-regulation of MMP9 gene expression, indicating a reduction in matrix degradation and inflammation. The observed cellular responses and gene expression changes substantiate the therapeutic efficacy of prepared hydrogels. Consequently, our study showed the healing effect of alginate-based hydrogel containing Curcumin on skin injuries.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
Ashoobi MT, Hemmati H, Aghayan HR, Zarei-Behjani Z, Keshavarz S, Babaloo H, Maroufizadeh S, Yousefi S, Farzin M, Vojoudi E. Wharton's jelly mesenchymal stem cells transplantation for critical limb ischemia in patients with type 2 diabetes mellitus: a preliminary report of phase I clinical trial. Cell Tissue Res 2024; 395:211-220. [PMID: 38112806 DOI: 10.1007/s00441-023-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide, with approximately 11% of patients presenting with advanced-stage PAD or critical limb ischemia (CLI). To avoid or delay amputation, particularly in no-option CLI patients with infeasible or ineffective revascularization, new treatment strategies such as regenerative therapies should be developed. Mesenchymal stem cells (MSCs) are the most popular cell source in regenerative therapies. They possess significant characteristics such as angiogenic, anti-inflammatory, and immunomodulatory activities, which encourage their application in different diseases. This phase I clinical trial reports the safety, feasibility, and probable efficacy of the intramuscular administration of allogeneic Wharton's jelly-derived MSCs (WJ-MSCs) in type 2 diabetes patients with CLI. Out of six screened patients with CLI, five patients were administered WJ-MSCs into the gastrocnemius, soleus, and the proximal part of the tibialis anterior muscles of the ischemic lower limb. The safety of WJ-MSCs injection was considered a primary outcome. Secondary endpoints included wound healing, the presence of pulse at the disease site, the absence of amputation, and improvement in visual analogue scale (VAS), pain-free walking time, and foot and ankle disability index (FADI). No patient experienced adverse events and foot or even toe amputation during the 6-month follow-up. Six months after the intervention, there were a significantly lower VAS score and significantly higher pain-free walking time and FADI score than the baseline, but no statistically significant difference was seen between other time points. In conclusion, allogeneic WJ-MSC transplantation in patients with CLI seems to be safe and effective.
Collapse
Affiliation(s)
- Mohammad Taghi Ashoobi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamideh Babaloo
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saman Maroufizadeh
- Department of Biostatistics, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Yousefi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohaya Farzin
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Roodbari AS, Solhjoo S, Palmerini MG, Mansouri M, Ezzatabadipour M. The effect of human menstrual blood-derived stem cells on ovarian folliculogenesis, angiogenesis and collagen volume in female rats affected by the polycystic ovary syndrome. J Ovarian Res 2023; 16:170. [PMID: 37608312 PMCID: PMC10463952 DOI: 10.1186/s13048-023-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Infertility is one of the common problems among couples, affecting millions of people worldwide. Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women and is associated with abnormal folliculogenesis, angiogenesis and fibrosis. Common treatments may lead to numerous adverse effects on the patient's quality of life. The present study aimed to investigate the effects of human menstrual blood-derived stem cells on the ovarian histology of a PCOS model of Wistar rats. RESULTS Based on the Papanicolaou test and H&E staining results, the number of primary, secondary and antral follicles in the PCOS and PCOS-Sham groups significantly increased compared to the control group, while they significantly decreased in the PCOS + Stem cells group compared to the PCOS and PCOS-Sham groups. Further, the number of atretic follicles in both PCOS and PCOS-Sham groups significantly increased in comparison with the control group and decreased in the PCOS + Stem cells group, compared to the two mentioned groups. Moreover, the Graafian follicles number was decreased in the PCOS and PCOS-Sham groups to significantly increase in the PCOS + Stem cells group. Based on Masson's trichrome staining, the number of blood vessels in PCOS and PCOS-Sham groups significantly increased compared to the control group, while a decrease was observed in the PCOS + Stem cells group, compared to PCOS and PCOS-Sham groups. CONCLUSION The administration of MenSCs improved folliculogenesis in rats with polycystic ovaries. Also, MenSCs could ameliorate PCOS symptoms by improving fibrosis as well as angiogenesis and weight gain.
Collapse
Affiliation(s)
- Ali Sarhadi Roodbari
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mahna Mansouri
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Hosseini M, Shafiee A. Vascularization of cutaneous wounds by stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:327-350. [PMID: 37678977 DOI: 10.1016/bs.pmbts.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Differentiated skin cells have limited self-renewal capacity; thus, the application of stem/progenitor cells, adult or induced stem cells, has attracted much attention for wound healing applications. Upon skin injury, vascularization, known as a highly dynamic process, occurs with the contribution of cells, the extracellular matrix, and relevant growth factors. Considering the importance of this process in tissue regeneration, several strategies have been proposed to enhance angiogenesis and accelerate wound healing. Previous studies report the effectiveness of stem/progenitor cells in skin wound healing by facilitating the vascularization process. This chapter reviews and highlights some of the key and recent investigations on application of stem/progenitor cells to induce skin revascularization after trauma.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia; ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Fitriani N, Wilar G, Narsa AC, Mohammed AFA, Wathoni N. Application of Amniotic Membrane in Skin Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030748. [PMID: 36986608 PMCID: PMC10053812 DOI: 10.3390/pharmaceutics15030748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords ‘amniotic membrane skin’, ‘amniotic membrane wound healing’, ‘amniotic membrane burn’, ‘amniotic membrane urethral defects’, ‘amniotic membrane junctional epidermolysis bullosa’, and ‘amniotic membrane calciphylaxis’. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin.
Collapse
Affiliation(s)
- Nurul Fitriani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Angga Cipta Narsa
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Ahmed F. A. Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
9
|
Xu Y, Cai S, Wang Q, Cheng M, Hui X, Dzakah EE, Zhao B, Chen X. Multi-Lineage Human Endometrial Organoids on Acellular Amniotic Membrane for Endometrium Regeneration. Cell Transplant 2023; 32:9636897231218408. [PMID: 38097275 PMCID: PMC10725651 DOI: 10.1177/09636897231218408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Asherman's syndrome is an endometrial regeneration disorder resulting from injury to the endometrial basal layer, causing the formation of scar tissue in the uterus and cervix. This usually leads to uterine infertility, menstrual disorders, and placental abnormalities. While stem cell therapy has shown extensive progress in repairing the damaged endometrium and preventing intrauterine adhesion, issues of low engraftment rates, rapid senescence, and the risk of tumorigenesis remain to be resolved for efficient and effective application of this technology in endometrial repair. This study addressed these challenges by developing a co-culture system to generate multi-lineage endometrial organoids (MLEOs) comprising endometrial epithelium organoids (EEOs) and endometrial mesenchymal stem cells (eMSCs). The efficacy of these MLEOs was investigated by seeding them on a biocompatible scaffold, the human acellular amniotic membrane (HAAM), to create a biological graft patch, which was subsequently transplanted into an injury model of the endometrium in rats. The results indicated that the MLEOs on the HAAM patch facilitated endometrial angiogenesis, regeneration, and improved pregnancy outcomes. The MLEOs on the HAAM patch could serve as a promising strategy for treating endometrial injury and preventing Asherman's syndrome.
Collapse
Affiliation(s)
- Yuhui Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Shuyan Cai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qian Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Minzhang Cheng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianrui Hui
- Institute of Organoid Technology, bioGenous Biotechnology, Inc., Suzhou, China
| | | | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Organoid Technology, bioGenous Biotechnology, Inc., Suzhou, China
- Institute of Organoid Technology, Kunming Medical University, Kunming, China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
10
|
Doudi S, Barzegar M, Taghavi EA, Eini M, Ehterami A, Stokes K, Alexander JS, Salehi M. Applications of acellular human amniotic membrane in regenerative medicine. Life Sci 2022; 310:121032. [DOI: 10.1016/j.lfs.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
11
|
Fan Y, Zhi Y, He M, Ahmadzadeh B, Rohani S. Cellulose acetate/Plerixafor wound dressings for transplantation of menstrual blood stem cells: Potential treatment modality for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Takejima AL, Francisco JC, Simeoni RB, de Noronha L, Garbers LA, Foltz KM, Junior PAM, Souza IC, Pinho RA, Carvalho KA, Guarita-Souza LC. Role of mononuclear stem cells and decellularized amniotic membrane in the treatment of skin wounds in rats. Tissue Barriers 2022; 10:1982364. [PMID: 34612164 PMCID: PMC9067462 DOI: 10.1080/21688370.2021.1982364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022] Open
Abstract
Stem cells (SC) and amniotic membrane (AM) are recognized for their beneficial impacts on the healing of cutaneous wounds. Thus, this study evaluated the capacity of tissue repair in a skin lesion rat model. Forty Wistar rats were randomized into four groups: group I - control, with full-thickness lesions on the back, without SC or AM; group II-injected SC; group III - covered by AM; group IV-injected SC and covered by AM. Lesion closure was assessed using contraction rate (Cr). Histochemical and immunohistochemical analyses were performed, and collagen, elastic fibers, fibroblast differentiation factor (TGF-β), collagen remodeling (MMP-8), and the number of myofibroblasts and blood vessels (α-SMA) were evaluated. On the 7th postoperative day, Cr 1st-7th day levels were higher in groups III and IV. However, on the 28th day, Cr 1st-28th day were higher in the control group. Picrosirius staining showed that type I collagen was predominant in all groups; however, the SC + AM group obtained a higher average when compared to the control group. Elastic fiber analysis showed a predominance in groups that received treatment. Groups II and IV showed the lowest expression levels of TGF-β and MMP-8, and α-SMA was significantly lower in group IV. The application of SC and AM accelerated the initial healing phase, probably owing to their anti-inflammatory effect that favored early formation of collagen and elastic fibers.
Collapse
Affiliation(s)
- Aline L. Takejima
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Julio C. Francisco
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Rossana B. Simeoni
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Lúcia de Noronha
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Luiz A.F.M. Garbers
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Kátia M. Foltz
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Paulo A.B. Machado Junior
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Isio C. Souza
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Ricardo A. Pinho
- Laboratory of Exercise Biochemistry in Health (BioEx) of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| | - Katherine A.T. Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Curitiba, PR, Brazil
| | - Luiz C. Guarita-Souza
- Experimental Laboratory, The Institute of Biological and Health Sciences of the Pontifical Catholic University of Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
13
|
Yan Y, Wang X, Zhu G. Endometrium Derived Stem Cells as Potential Candidates in Nervous System Repair. Ann Biomed Eng 2022; 50:485-498. [PMID: 35235077 DOI: 10.1007/s10439-022-02909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/01/2022] [Indexed: 11/24/2022]
Abstract
Limited cell division and lack of endogenous repair mechanisms in the central nervous system, hampers tissue repair following neurodegenerative diseases or tissue injuries. Unlike central nervous system; peripheral nervous system has some capacity to repair after injury, but in case of critical sized defects the use of supporting cells in the neural guidance channels seems inevitable to obtain a satisfactory functional recovery. Stem cell therapies have provided new frontiers in the repair of nervous system largely through paracrine secretion mechanisms. The therapeutic potential of stem cells differs according to their tissue of origin, mode of isolation, administration route, and passage number. During the past decades, studies have been focused on stem cells harvested from disposable tissues such as menstrual blood or biopsies from endometrium. These cells are characterized by their high differentiation and proliferation potential, ease of harvest, and lack of ethical concerns. In the current review, we will discuss the prospects and challenges of endometrial stem cells' application in nervous system repair.
Collapse
Affiliation(s)
- Yifen Yan
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China
| | - Xiaoli Wang
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China
| | - Guijuan Zhu
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Zhong Road, Shiyan City, 442000, Hubei Province, China.
| |
Collapse
|
14
|
Pichlsberger M, Jerman UD, Obradović H, Tratnjek L, Macedo AS, Mendes F, Fonte P, Hoegler A, Sundl M, Fuchs J, Schoeberlein A, Kreft ME, Mojsilović S, Lang-Olip I. Systematic Review of the Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing. Front Bioeng Biotechnol 2021; 9:742858. [PMID: 34631683 PMCID: PMC8498585 DOI: 10.3389/fbioe.2021.742858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Knowledge of the beneficial effects of perinatal derivatives (PnD) in wound healing goes back to the early 1900s when the human fetal amniotic membrane served as a biological dressing to treat burns and skin ulcerations. Since the twenty-first century, isolated cells from perinatal tissues and their secretomes have gained increasing scientific interest, as they can be obtained non-invasively, have anti-inflammatory, anti-cancer, and anti-fibrotic characteristics, and are immunologically tolerated in vivo. Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). This review provides a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. We highlight the advantages and limitations of the most commonly used animal models and evaluate the impact of the type of PnD, the route of administration, and the dose of cells/secretome application in correlation with the wound healing outcome. This review is a collaborative effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the preclinical application of PnD in wound healing.
Collapse
Affiliation(s)
- Melanie Pichlsberger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Sofia Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Francisca Mendes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fonte
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Center for Marine Sciences (CCMar), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Anja Hoegler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Monika Sundl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Hennes DMZB, Rosamilia A, Werkmeister JA, Gargett CE, Mukherjee S. Endometrial SUSD2 + Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. J Pers Med 2021; 11:jpm11090840. [PMID: 34575617 PMCID: PMC8471527 DOI: 10.3390/jpm11090840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is an emerging field in clinical and personalised medicine. Many adult mesenchymal stem/progenitor cells (MSC) or pluripotent derivatives are being assessed simultaneously in preclinical trials for their potential treatment applications in chronic and degenerative human diseases. Endometrial mesenchymal stem/progenitor cells (eMSC) have been identified as clonogenic cells that exist in unique perivascular niches within the uterine endometrium. Compared with MSC isolated from other tissue sources, such as bone marrow and adipose tissue, eMSC can be extracted through less invasive methods of tissue sampling, and they exhibit improvements in potency, proliferative capacity, and control of culture-induced differentiation. In this review, we summarize the potential cell therapy and tissue engineering applications of eMSC in pelvic organ prolapse (POP), emphasising their ability to exert angiogenic and strong immunomodulatory responses that improve tissue integration of novel surgical constructs for POP and promote vaginal tissue healing.
Collapse
Affiliation(s)
- David M. Z. B. Hennes
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| |
Collapse
|
16
|
Salehi M, Farzamfar S, Ehterami A, Paknejad Z, Bastami F, Shirian S, Vahedi H, Koehkonan GS, Goodarzi A. Kaolin-loaded chitosan/polyvinyl alcohol electrospun scaffold as a wound dressing material: in vitro and in vivo studies. J Wound Care 2021; 29:270-280. [PMID: 32421483 DOI: 10.12968/jowc.2020.29.5.270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the application of a fabricated dressing containing kaolin for skin regeneration in a rat model of excisional wounds. METHOD In the present study, kaolin was loaded into electrospun polyvinyl alcohol (PVA)/chitosan polymer blend to develop a composite nanofibrous dressing. To make the yarns, kaolin with weight ratio of 5% was added to PVA/chitosan polymer blend and subsequently formed into nanofibres using the electrospinning method. Scaffolds were evaluated for to their microstructure, mechanical properties, surface wettability, water vapour transmission rate, water-uptake capacity, blood uptake capacity, blood compatibility, microbial penetration test, the number of colonies, and cellular response with the L929 cell line. Rats with full-thickness excisional wounds were treated with kaolin-containing and kaolin-free dressings. RESULTS The study showed that rats treated with the kaolin-incorporated mats demonstrated a significant closure to nearly 97.62±4.81% after 14 days compared with PVA/chitosan and the sterile gauze, which showed 86.15±8.11% and 78.50±4.22% of wound closure, respectively. The histopathological studies showed that in the PVA/chitosan/kaolin group, dense and regular collagen fibres were formed, while wounds treated with sterile gauze or PVA/chitosan scaffolds had random and loose collagen fibres. CONCLUSION Our results show the potential applicability of PVA/chitosan/kaolin scaffolds as a wound care material.
Collapse
Affiliation(s)
- Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahrasadat Paknejad
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Behest University of Medical Sciences, Tehran, Iran.,Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathology Lab, Shiraz, Iran
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
17
|
Nejad AR, Hamidieh AA, Amirkhani MA, Sisakht MM. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2020; 103:104-119. [PMID: 33120046 DOI: 10.1016/j.placenta.2020.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing number of studies performed in the field of regenerative medicine during the last two decades, more analytic studies are still needed to clarify the future prospect of this area of science. The main aim of this research was to review the clinical applications of human Amniotic membrane in the field of regenerative medicine critically. Furthermore, in the light of increasing numbers of available products derived from amniotic membrane, we aimed look in depth to see whether regenerative medicine research strategies have a place in the clinical setting. More specifically, in the present study, we attempted to provide insight on developing the new indication for more research and in the next step, for market leaders companies to expand cost-effectiveness of new derived AM products. 20 companies or distributers have offered some commercial products in this field. Survey on more than 90 clinical trials in last five years showed dermatology (and more specific wound healing), orthopedic, and ophthalmology are heavily biased toward multibillion dollar industry. Moreover, urology and dentistry with fewer numbers of clinical data in comparison with the above-mentioned areas, currently are in the path of translation (especially dentistry). In addition, otolaryngology and oncology with the lowest number showed more potential of research thorough understanding the properties that will help guiding the use of AM-derived products in these two areas in future. More than 50% of clinical studies were done or are developing in USA, which have the biggest share in market products. Subsequently, China, Egypt, India, Iran, and Germany with the ongoing clinical trials in different phases may have more approved products in near future.
Collapse
Affiliation(s)
- Aida Rezaei Nejad
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Front Cell Dev Biol 2020; 8:497. [PMID: 32742977 PMCID: PMC7364758 DOI: 10.3389/fcell.2020.00497] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Shohreh Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobitechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, Davachi SM, Mirzaii M, Salehi M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101379] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G, Vaez A, Hashemi SF, Rezaei N, Mousavi SR. Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomed Eng Lett 2019; 10:149-161. [PMID: 32175135 DOI: 10.1007/s13534-019-00138-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, cinnamon (cin) was loaded into poly(ε-caprolactone)/gelatin (PCL/Gel) nanofibrous matrices in order to fabricate an appropriate mat to improve wound healing. Mats were fabricated from PCL/COLL [1:1 (w/w)] solution with 1, 5 and 25% (w/v) of cinnamon. Prepared mats were characterized with regard to their microstructure, mechanical properties, porosity, surface wettability, water-uptake capacity, water vapor permeability, blood compatibility, microbial penetration and cellular response. The fabricated mats with and without cinnamon were used to treat the full-thickness excisional wounds in Wistar rats. The results indicated that the amount of cinnamon had a direct effect on porosity, mechanical properties, water uptake capacity, water contact angle, water vapor transmission rate and cell proliferation. In addition, the results of in vivo study indicated that after 14 days, the wounds which were treated with PCL/Gel 5%cin had better wound closure (98%) among other groups. Our results suggest that the cinnamon can be used as a suitable material for wound healing.
Collapse
Affiliation(s)
- Majid Salehi
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Niyakan
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- 4Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Haghi-Daredeh
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Simin Nazarnezhad
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- 2Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- 5Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- 6Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Hashemi
- 3Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Reza Mousavi
- 1Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Ghorbani S, Ai J, Sahrapeyma H. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|