1
|
Feng Y, Mao Q, Hong L, Wang X, Tao C, Liu X. Quantitative assessment of thrombosis-induced blood oxygenation change in deep tissues based on photoacoustic tomography: an ex vivo study. BIOMEDICAL OPTICS EXPRESS 2025; 16:1557-1568. [PMID: 40322004 PMCID: PMC12047737 DOI: 10.1364/boe.557086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
The staging and classification of thrombosis hold significant clinical value for optimizing thrombus treatment strategies. In this study, we propose a quantitative method based on photoacoustic tomography for assessing thrombosis in deep tissues. By using inner chromophore signals as a correction factor, this approach minimizes the 'spectral coloring' effects caused by overlying heterogeneous tissues. Ex vivo experiments validate that the method acquires accurate spectra up to a depth of 30 mm across various tissue conditions. After calibration, the Pearson correlation coefficients calculated for the spectrum in deep tissue against the uncolored absorption spectrum is 15% higher, and the standard deviation of the Pearson correlation coefficients decreased by 58%. Sequential measurements capture time-dependent spectral changes of thrombus phantom during six days, providing a potential diagnostic reference for thrombus formation time and type. This method offers a non-invasive, practical tool for accurately quantifying thrombosis stages, which might be valuable for optimizing treatment strategies.
Collapse
Affiliation(s)
- Yingjie Feng
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiuqin Mao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lei Hong
- Department of Vascular Surgery the First Affiliated Hospital of USTC, Hefei, China
| | - Xiaotian Wang
- Department of Vascular Surgery the First Affiliated Hospital of USTC, Hefei, China
| | - Chao Tao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaojun Liu
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Lu C, Li C, Gu N, Yang F. Emerging Elastic Micro-Nano Materials for Diagnosis and Treatment of Thrombosis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0614. [PMID: 40028043 PMCID: PMC11868703 DOI: 10.34133/research.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Thrombus is a blood clot that forms in a blood vessel at the point of flaking. Thrombosis is closely associated with cardiovascular diseases caused by different sources and factors. However, the current clinical methods of thrombus diagnosis and treatment still have problems with targeting, permeability, stability, and biosafety. Therefore, in recent years, based on the development of micro/nano technology, researchers have tried to develop some new strategies for the diagnosis and treatment of thrombosis. Due to the unique structural characteristics, the micro-nano materials in physiological environments show excellent transport and delivery properties such as better in vivo circulation, longer life span, better targeting ability, and controllable cellular internalization. Especially, elasticity and stiffness are inherent mechanical properties of some well-designed micro-nano materials, which can make them better adapted to the needs of thrombosis diagnosis and treatment. Herein, this review first introduces the thrombotic microenvironment to characterize the thrombus development process. Then, to fine-tune the pathological occurrence and development of thrombosis, the role of elastic micro-nano materials for thrombus diagnosis and treatment is summarized. The properties, preparation methods, and biological fate of these materials have been discussed in detail. Following, the applications of elastic micro-nano materials in biomedical imaging, drug delivery, and therapy of thrombosis are highlighted. Last, the shortcomings and future design strategies of elastic micro-nano materials in diagnosis and treatment of clinical thrombosis are discussed. This review will provide new ideas for the use of nanotechnology in clinical diagnosis and treatment of thrombus in the future.
Collapse
Affiliation(s)
- Chenxin Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| | - Chunjian Li
- Department of Cardiology,
The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School,
Nanjing University, Nanjing 210093, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
3
|
Menozzi L, Yao J. Deep tissue photoacoustic imaging with light and sound. NPJ IMAGING 2024; 2:44. [PMID: 39525280 PMCID: PMC11541195 DOI: 10.1038/s44303-024-00048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
4
|
Leerson J, Tulloh A, Lopez FT, Gregory S, Buscher H, Rosengarten G. Detecting Oxygenator Thrombosis in ECMO: A Review of Current Techniques and an Exploration of Future Directions. Semin Thromb Hemost 2024; 50:253-270. [PMID: 37640048 DOI: 10.1055/s-0043-1772843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-support technique used to treat cardiac and pulmonary failure, including severe cases of COVID-19 (coronavirus disease 2019) involving acute respiratory distress syndrome. Blood clot formation in the circuit is one of the most common complications in ECMO, having potentially harmful and even fatal consequences. It is therefore essential to regularly monitor for clots within the circuit and take appropriate measures to prevent or treat them. A review of the various methods used by hospital units for detecting blood clots is presented. The benefits and limitations of each method are discussed, specifically concerning detecting blood clots in the oxygenator, as it is concluded that this is the most critical and challenging ECMO component to assess. We investigate the feasibility of solutions proposed in the surrounding literature and explore two areas that hold promise for future research: the analysis of small-scale pressure fluctuations in the circuit, and real-time imaging of the oxygenator. It is concluded that the current methods of detecting blood clots cannot reliably predict clot volume, and their inability to predict clot location puts patients at risk of thromboembolism. It is posited that a more in-depth analysis of pressure readings using machine learning could better provide this information, and that purpose-built imaging could allow for accurate, real-time clotting analysis in ECMO components.
Collapse
Affiliation(s)
- Jack Leerson
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Andrew Tulloh
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Francisco Tovar Lopez
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Shaun Gregory
- Department of Mechanical and Aerospace Engineering, Cardiorespiratory Engineering and Technology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, Australia
| | - Gary Rosengarten
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Wu H, Tang Y, Zhang B, Klippel P, Jing Y, Yao J, Jiang X. Miniaturized Stacked Transducer for Intravascular Sonothrombolysis With Internal-Illumination Photoacoustic Imaging Guidance and Clot Characterization. IEEE Trans Biomed Eng 2023; 70:2279-2288. [PMID: 37022249 PMCID: PMC10399617 DOI: 10.1109/tbme.2023.3240725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thromboembolism in blood vessels can lead to stroke or heart attack and even sudden death unless brought under control. Sonothrombolysis enhanced by ultrasound contrast agents has shown promising outcome on effective treatment of thromboembolism. Intravascular sonothrombolysis was also reported recently with a potential for effective and safe treatment of deep thrombosis. Despite the promising treatment results, the treatment efficiency for clinical application may not be optimized due to the lack of imaging guidance and clot characterization during the thrombolysis procedure. In this paper, a miniaturized transducer was designed to have an 8-layer PZT-5A stacked with an aperture size of 1.4 × 1.4 mm2 and assembled in a customized two-lumen 10-Fr catheter for intravascular sonothrombolysis. The treatment process was monitored with internal-illumination photoacoustic tomography (II-PAT), a hybrid imaging modality that combines the rich contrast of optical absorption and the deep penetration of ultrasound detection. With intravascular light delivery using a thin optical fiber integrated with the intravascular catheter, II-PAT overcomes the penetration depth limited by strong optical attenuation of tissue. In-vitro PAT-guided sonothrombolysis experiments were carried out with synthetic blood clots embedded in tissue phantom. Clot position, shape, stiffness, and oxygenation level can be estimated by II-PAT at clinically relevant depth of ten centimeters. Our findings have demonstrated the feasibility of the proposed PAT-guided intravascular sonothrombolysis with real-time feedback during the treatment process.
Collapse
|
6
|
Ma C, Kuang X, Chen M, Menozzi L, Jiang L, Zhou Q, Zhang YS, Yao J. Multiscale photoacoustic tomography using reversibly switchable thermochromics. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082804. [PMID: 36817549 PMCID: PMC9932525 DOI: 10.1117/1.jbo.28.8.082804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Based on acoustic detection of optical absorption, photoacoustic tomography (PAT) allows functional and molecular imaging beyond the optical diffusion limit with high spatial resolution. However, multispectral functional and molecular PAT is often limited by decreased spectroscopic accuracy and reduced detection sensitivity in deep tissues, mainly due to wavelength-dependent optical attenuation and inaccurate acoustic inversion. AIM Previous work has demonstrated that reversible color-shifting can drastically improve the detection sensitivity of PAT by suppressing nonswitching background signals. We aim to develop a new color switching-based PAT method using reversibly switchable thermochromics (ReST). APPROACH We developed a family of ReST with excellent water dispersion, biostability, and temperature-controlled color changes by surface modification of commercial thermochromic microcapsules with the hydrophilic polysaccharide alginate. RESULTS The optical absorbance of the ReST was switched on and off repeatedly by modulating the surrounding temperature, allowing differential photoacoustic detection that effectively suppressed the nonswitching background signal and substantially improved image contrast and detection sensitivity. We demonstrate reversible thermal-switching imaging of ReST in vitro and in vivo using three PAT modes at different length scales. CONCLUSIONS ReST-enabled PAT is a promising technology for high-sensitivity deep tissue imaging of molecular activity in temperature-related biomedical applications, such as cancer thermotherapy.
Collapse
Affiliation(s)
- Chenshuo Ma
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Xiao Kuang
- Brigham and Women’s Hospital, Harvard Medical School, Division of Engineering in Medicine, Department of Medicine, Cambridge, Massachusetts, United States
| | - Maomao Chen
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Luca Menozzi
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Laiming Jiang
- University of Southern California, Department of Biomedical Engineering and USC Roski Eye Institute, Los Angeles, California, United States
| | - Qifa Zhou
- University of Southern California, Department of Biomedical Engineering and USC Roski Eye Institute, Los Angeles, California, United States
| | - Yu Shrike Zhang
- Brigham and Women’s Hospital, Harvard Medical School, Division of Engineering in Medicine, Department of Medicine, Cambridge, Massachusetts, United States
| | - Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
7
|
Bodera FJ, McVey MJ, Sathiyamoorthy K, Kolios MC. Detection of clot formation & lysis In-Vitro using high frequency photoacoustic imaging & frequency analysis. PHOTOACOUSTICS 2023; 30:100487. [PMID: 37095887 PMCID: PMC10122060 DOI: 10.1016/j.pacs.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Clotting is a physiological process that prevents blood loss after injury. An imbalance in clotting factors can lead to lethal consequences such as exsanguination or inappropriate thrombosis. Clinical methods to monitor clotting and fibrinolysis typically measure the viscoelasticity of whole blood or optical density of plasma over time. Though these methods provide insights into clotting and fibrinolysis, they require milliliters of blood which can worsen anemia or only provide partial information. To overcome these limitations, a high-frequency photoacoustic (HFPA) imaging system was developed to detect clotting and lysis in blood. Clotting was initiated in vitro in reconstituted blood using thrombin and lysed with urokinase plasminogen activator. Frequency spectra measured using HFPA signals (10-40 MHz) between non-clotted blood and clotted blood differed markedly, allowing tracking of clot initiation and lysis in volumes of blood as low as 25 µL/test. HFPA imaging shows potential as a point-of-care examination of coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Filip J. Bodera
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
- SickKids Hospital for Sick Children, Toronto, Canada
- Correspondence to: Department of Physics Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B2K3, Canada.
| | - Mark J. McVey
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- SickKids Hospital for Sick Children, Toronto, Canada
- Department of Anesthesia, University of Toronto, Toronto, Canada
| | - Krishnan Sathiyamoorthy
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
8
|
Yoon C, Lee C, Shin K, Kim C. Motion Compensation for 3D Multispectral Handheld Photoacoustic Imaging. BIOSENSORS 2022; 12:1092. [PMID: 36551059 PMCID: PMC9775698 DOI: 10.3390/bios12121092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) handheld photoacoustic (PA) and ultrasound (US) imaging performed using mechanical scanning are more useful than conventional 2D PA/US imaging for obtaining local volumetric information and reducing operator dependence. In particular, 3D multispectral PA imaging can capture vital functional information, such as hemoglobin concentrations and hemoglobin oxygen saturation (sO2), of epidermal, hemorrhagic, ischemic, and cancerous diseases. However, the accuracy of PA morphology and physiological parameters is hampered by motion artifacts during image acquisition. The aim of this paper is to apply appropriate correction to remove the effect of such motion artifacts. We propose a new motion compensation method that corrects PA images in both axial and lateral directions based on structural US information. 3D PA/US imaging experiments are performed on a tissue-mimicking phantom and a human wrist to verify the effects of the proposed motion compensation mechanism and the consequent spectral unmixing results. The structural motions and sO2 values are confirmed to be successfully corrected by comparing the motion-compensated images with the original images. The proposed method is expected to be useful in various clinical PA imaging applications (e.g., breast cancer, thyroid cancer, and carotid artery disease) that are susceptible to motion contamination during multispectral PA image analysis.
Collapse
Affiliation(s)
- Chiho Yoon
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changyeop Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | | | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|