1
|
Xue M, Deng Q, Deng L, Xun T, Huang T, Zhao J, Wei S, Zhao C, Chen X, Zhou Y, Liang Y, Yang X. Alterations of gut microbiota for the onset and treatment of psoriasis: A systematic review. Eur J Pharmacol 2025; 998:177521. [PMID: 40107339 DOI: 10.1016/j.ejphar.2025.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is a chronic, recurrent and systemic inflammatory skin disease which is mediated by immunoreaction. Its pathogenesis is multifactorial, and the exact driving factor remains unclear. Recent studies showed that gut microbiota, which maintain immune homeostasis of our bodies, is closely related with occurrence, development and prognosis of psoriasis. The intestinal microbial abundance and diversity in patients with psoriasis have changed significantly, including intestinal microbiota disorders and reduced production of short chain fatty acids (SCFAs), abnormalities in Firmicutes/Bacteroidetes (F/B), etc. Besides, the intestinal microbiota of psoriasis patients has also changed after treatment of systemic drugs, biologics and small molecule chemical drugs, suggesting that the intestinal microbiota may be a potential response-to-treatment biomarker for evaluating treatment effectiveness. Oral probiotics and prebiotics administration as well as fecal microbial transplantation were also reported to benefit well in psoriasis patients. Additionally, we also discussed the microbial changes from the skin and other organs, which regulated both the onset and treatment of psoriasis together with gut microbiota. Herein, we reviewed recent studies on the psoriasis-related microbiota in an attempt to confidently identify the "core" microbiota of psoriatic patients, understand how microbiota influence psoriasis through the gut-skin axis, and explore potential therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - QuanWen Deng
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li Deng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TianRong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TingTing Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - JingQian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - ChenYu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - YiWen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - YanHua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - XiXiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Polak K, Muszyński T, Frątczak A, Meznerics F, Bánvölgyi A, Kiss N, Miziołek B, Bergler-Czop B. Study of gut microbiome alterations in plaque psoriasis patients compared to healthy individuals. Postepy Dermatol Alergol 2024; 41:378-387. [PMID: 39290901 PMCID: PMC11404103 DOI: 10.5114/ada.2024.142394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Many studies have shown significant alterations in the gut microbiome of patients with psoriasis compared to healthy controls. Aim The primary objective of the current research was to explore the impact of gut microbiome composition on the progression and severity of plaque psoriasis. Material and methods A total of 20 patients with moderate-to-severe psoriasis and 20 healthy individuals were recruited and provided a stool sample to assess the gut microbiome. After the samples were prepared according to the NGS library preparation workflow, they were sequenced using the Illumina platform and the report was generated that underwent statistical analysis. Results The microbiome profiles of psoriasis patients exhibited significant differences compared to healthy controls as evidenced by the statistical analysis of various bacterial genera, with the median abundance significantly lower in psoriasis patients compared to healthy controls (p = 0.033). The analysis of the Firmicutes-to-Bacteroidetes ratio, a commonly evaluated marker of dysbiosis, did not reach statistical significance (p = 0.239). However, there was a noticeable trend towards a higher median ratio in psoriasis patients compared to healthy controls. The ratio did not show significant associations with PASI or BSA but trends towards significance with DLQI (B = -12.11, p = 0.095). Conclusions Overall, the above findings underscore the importance of the gut microbiome in psoriasis and suggest that modulation of specific bacterial genera, especially that with significant differences, could be a potential strategy for therapeutic intervention. Targeting these depleted genera through microbiome-based interventions, such as probiotic supplementation or faecal microbiota transplantation, could potentially help to restore gut homeostasis and alleviate the inflammatory burden in psoriasis.
Collapse
Affiliation(s)
- Karina Polak
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
- Doctoral School of the Medical University of Silesia, Katowice, Poland
| | - Tomasz Muszyński
- Brothers Hospitallers of Saint John of God Hospital, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | | | - Fanni Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Bartosz Miziołek
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| | - Beata Bergler-Czop
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
4
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
5
|
Pessôa R, Clissa PB, Sanabani SS. The Interaction between the Host Genome, Epigenome, and the Gut-Skin Axis Microbiome in Atopic Dermatitis. Int J Mol Sci 2023; 24:14322. [PMID: 37762624 PMCID: PMC10532357 DOI: 10.3390/ijms241814322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that occurs in genetically predisposed individuals. It involves complex interactions among the host immune system, environmental factors (such as skin barrier dysfunction), and microbial dysbiosis. Genome-wide association studies (GWAS) have identified AD risk alleles; however, the associated environmental factors remain largely unknown. Recent evidence suggests that altered microbiota composition (dysbiosis) in the skin and gut may contribute to the pathogenesis of AD. Examples of environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, irritants, pollution, and microbial exposure. Studies have reported alterations in the gut microbiome structure in patients with AD compared to control subjects, characterized by increased abundance of Clostridium difficile and decreased abundance of short-chain fatty acid (SCFA)-producing bacteria such as Bifidobacterium. SCFAs play a critical role in maintaining host health, and reduced SCFA production may lead to intestinal inflammation in AD patients. The specific mechanisms through which dysbiotic bacteria and their metabolites interact with the host genome and epigenome to cause autoimmunity in AD are still unknown. By understanding the combination of environmental factors, such as gut microbiota, the genetic and epigenetic determinants that are associated with the development of autoantibodies may help unravel the pathophysiology of the disease. This review aims to elucidate the interactions between the immune system, susceptibility genes, epigenetic factors, and the gut microbiome in the development of AD.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-002, Brazil;
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05508-220, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency LIM56/03, Instituto de Medicina Tropical de Sao Paulo, Faculdade de Medicina, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, Sao Paulo 05403-000, Brazil
| |
Collapse
|
6
|
Lai Y, Wu X, Chao E, Bloomstein JD, Wei G, Hwang ST, Shi Z. Impact of Gut Bacterial Metabolites on Psoriasis and Psoriatic Arthritis: Current Status and Future Perspectives. J Invest Dermatol 2023; 143:1657-1666. [PMID: 37422760 DOI: 10.1016/j.jid.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/10/2023]
Abstract
There is growing evidence that supports a role of gut dysbiosis in the pathogenesis of psoriasis (Pso). Thus, probiotic supplementation and fecal microbiota transplantation may serve as promising preventive and therapeutic strategies for patients with Pso. One of the basic mechanisms through which the gut microbiota interacts with the host is through bacteria-derived metabolites, usually intermediate or end products produced by microbial metabolism. In this study, we provide an up-to-date review of the most recent literature on microbial-derived metabolites and highlight their roles in the immune system, with a special focus on Pso and one of its most common comorbidities, psoriatic arthritis.
Collapse
Affiliation(s)
- Yuhsien Lai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Ellen Chao
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | | | - Grace Wei
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Sam T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Radulska A, Pelikant-Małecka I, Jendernalik K, Dobrucki IT, Kalinowski L. Proteomic and Metabolomic Changes in Psoriasis Preclinical and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24119507. [PMID: 37298466 DOI: 10.3390/ijms24119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.
Collapse
Affiliation(s)
- Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Kamila Jendernalik
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405N Mathews Ave., MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| |
Collapse
|
8
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
9
|
Stec A, Maciejewska M, Paralusz-Stec K, Michalska M, Giebułtowicz J, Rudnicka L, Sikora M. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis. J Inflamm Res 2023; 16:1895-1904. [PMID: 37152867 PMCID: PMC10162098 DOI: 10.2147/jir.s409489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare immune-mediated connective tissue disease characterized by fibrosis of the skin and internal organs, whose pathogenesis is not fully understood. Recent studies have revealed dysbiosis in patients with systemic sclerosis and have indicated the possible role of the microbiota and its metabolites in the pathogenesis of the disease. Trimethylamine N-oxide (TMAO) is a compound produced by dysbiotic microbiota observed at higher concentrations in several autoimmune diseases. Objective To determine concentrations of the bacteria-derived metabolite TMAO in patients with systemic sclerosis and to assess possible correlation between TMAO and a specific manifestation of the disease. Patients and Methods The study included 63 patients with SSc and 47 matched control subjects. The concentration of TMAO was measured with high-performance liquid chromatography. Results Plasma TMAO level was significantly increased in patients with SSc (283.0 [188.5-367.5] ng/mL versus 205.5 [101.0-318.0] ng/mL; p < 0.01). An increased concentration of TMAO was observed in patients with concomitant interstitial lung disease (ILD) (302.0 ng/mL [212.0-385.5] ng/mL versus 204.0 [135.5-292.0] ng/mL; p < 0.01) and esophageal dysmotility (289.75 [213.75-387.5] ng/mL versus 209.5 ng/mL [141.5-315.0] ng/mL; p < 0.05) compared to patients without these complications. Furthermore, TMAO concentration exhibited significant correlation with markers of heart involvement (left ventricle ejection fraction, NT-proBNP), marker of ILD severity and Scleroderma Clinical Trials Consortium Damage Index. Conclusion The concentration of TMAO, gut microbiota-associated metabolite, is increased in systemic sclerosis, particularly in patients with advanced organ involvement. This is the first study evaluating plasma TMAO in systemic sclerosis. Bacterial metabolites may be a link between dysbiosis and organ involvement in the course of the disease. Modulation of gut bacterial-derived metabolites may represent a new therapeutic approach in the management of systemic sclerosis.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Correspondence: Mariusz Sikora, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, Warsaw, 02-637, Poland, Tel +48 22 670 91 00, Fax +48 22 844 77 97, Email
| |
Collapse
|
10
|
A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. J Pers Med 2022; 12:jpm12071118. [PMID: 35887615 PMCID: PMC9324618 DOI: 10.3390/jpm12071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the most common comorbidities that may affect psoriatic patients. Several exogenous and endogenous factors are involved in the etiology and progression of both psoriasis and CVD. A potential genetic link between the two diseases has emerged; however, some gaps remain in the understanding of the CVD prevalence in psoriatic patients. Recently, the role of the gut microbiome dysbiosis was documented in the development and maintenance of both diseases. To investigate whether gut microbiome dysbiosis might influence the occurrence of CVD in psoriatic patients, 16S rRNA gene sequencing was performed to characterize the gut microbiome of 28 psoriatic patients, including 17 patients with and 11 without CVD. The comparison of the gut microbiome composition between patients with and without CVD showed a higher prevalence of Barnesiellaceae and Phascolarctobacterium in patients with CVD. Among patients with CVD, those undergoing biologic therapy had lower abundance levels of Barnesiellaceae, comparable to those found in patients without CVD. Overall, these findings suggest that the co-occurrence of psoriasis and CVD might be linked to gut microbiome dysbiosis and that therapeutic strategies could help to restore the intestinal symbiosis, potentially improving the clinical management of psoriasis and its associated comorbidities.
Collapse
|
11
|
Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and Indirect Methods for Studying Human Gut Microbiota. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:19-34. [DOI: 10.22416/1382-4376-2022-32-2-19-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim: To review the main methods of intestinal microbiota studying.Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers, i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e. methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new approaches to correction of individual microbiota components.Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well open up new opportunities for prevention and treatment.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - A. E. Karchevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University); N.N. Burdenko National Medical Research Center of Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology
| |
Collapse
|
12
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
Affiliation(s)
| | - Carole Nicco
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Souhaila Al Khodor
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Annalisa Terranegra
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Chantal Pichon
- Center for Molecular Biophysics CNRS UPR 4301, University of Orléans, Orléans, France
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Jena, Germany
| | - Marvin Edeas
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
13
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
14
|
Eyileten C, Jarosz-Popek J, Jakubik D, Gasecka A, Wolska M, Ufnal M, Postula M, Toma A, Lang IM, Siller-Matula JM. Plasma Trimethylamine-N-Oxide Is an Independent Predictor of Long-Term Cardiovascular Mortality in Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:728724. [PMID: 34778397 PMCID: PMC8585769 DOI: 10.3389/fcvm.2021.728724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate the association of liver metabolite trimethylamine N-oxide (TMAO) with cardiovascular disease (CV)-related and all-cause mortality in patients with acute coronary syndrome (ACS) who underwent percutaneous coronary intervention. Our prospective observational study enrolled 292 patients with ACS. Plasma concentrations of TMAO were measured during the hospitalization for ACS. Observation period lasted seven yr in median. Adjusted Cox-regression analysis was used for prediction of mortality. ROC curve analysis revealed that increasing concentrations of TMAO levels assessed at the time point of ACS significantly predicted the risk of CV mortality (c-index=0.78, p < 0.001). The cut-off value of >4 μmol/L, labeled as high TMAO level (23% of study population), provided the greatest sum of sensitivity (85%) and specificity (80%) for the prediction of CV mortality and was associated with a positive predictive value of 16% and a negative predictive value of 99%. A multivariate Cox regression model revealed that high TMAO level was a strong and independent predictor of CV death (HR = 11.62, 95% CI: 2.26-59.67; p = 0.003). High TMAO levels as compared with low TMAO levels were associated with the highest risk of CV death in a subpopulation of patients with diabetes mellitus (27.3 vs. 2.6%; p = 0.004). Although increasing TMAO levels were also significantly associated with all-cause mortality, their estimates for diagnostic accuracy were low. High TMAO level is a strong and independent predictor of long-term CV mortality among patients presenting with ACS.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Marcin Ufnal
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aurel Toma
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Irene M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Jolanta M. Siller-Matula
| |
Collapse
|