1
|
Dongare DB, Nishad SS, Mastoli SY, Saraf SA, Srivastava N, Dey A. High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics 2025; 25:22. [PMID: 39838192 DOI: 10.1007/s10142-025-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
High-resolution insights into the nucleotide arrangement within an organism's genome are pivotal for deciphering its genetic composition, function, and evolutionary trajectory. Over the years, nucleic acid sequencing has been instrumental in driving significant advancements in genomics and molecular biology. The advent of high-throughput or next-generation sequencing (NGS) technologies has revolutionized whole genome sequencing, revealing novel and intriguing features of genomes, such as single nucleotide polymorphisms and lethal mutations in both coding and non-coding regions. These platforms provide a practical approach to comprehensively identifying and analyzing whole genomes with remarkable throughput, accuracy, and scalability within a short time frame. The resulting data holds immense potential for enhancing healthcare systems, developing novel and personalized therapies, and preparing for future pandemics and outbreaks. Given the wide array of available high-throughput sequencing platforms, selecting the appropriate technology based on specific needs is crucial. However, there is limited information regarding sample preparation, sequencing principles, and output data to facilitate a comparative evaluation of these platforms. This review details various NGS technologies and approaches, examining their advantages, limitations, and future potential. Despite being in their early stages and facing challenges, ongoing advancements in NGS are expected to yield significant future benefits.
Collapse
Affiliation(s)
- Dipali Barku Dongare
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shaik Shireen Nishad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Sakshi Y Mastoli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India.
| |
Collapse
|
2
|
Wang Y, Liu J, Wang Z, Zhang M, Zhang Y. The Research Progress of Single-Molecule Sequencing and Its Significance in Nucleic Acid Metrology. BIOSENSORS 2024; 15:4. [PMID: 39852055 PMCID: PMC11763189 DOI: 10.3390/bios15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability. Notably, its direct detection capabilities offer a novel approach to nucleic acid metrology. This paper provides a detailed overview of library construction, signal generation and detection, and data analysis methods in single-molecule sequencing and discusses its implications for nucleic acid metrology.
Collapse
Affiliation(s)
- Yajun Wang
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China;
| | - Jingjing Liu
- College of Information and Control Engineering, China Northeast Electric Power University, Jilin 132011, China;
| | - Zhendong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| | - Mei Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (Z.W.); (M.Z.)
| |
Collapse
|
3
|
Du J, Wang Z, Xing Y, Gao X, Lu Z, Li D, Tian J. Long-Read Sequencing Revealing the Effectiveness of Captive Breeding Strategy for Improving the Gut Microbiota of Spotted Seal (Phoca largha). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:9. [PMID: 39589560 DOI: 10.1007/s10126-024-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The spotted seal (Phoca largha) is the sole pinniped species that can reproduce in China and has been classified as the First-Grade State Protection animal. The conventional method for the protection and maintenance of the spotted seal population is the captive maintenance of the species in artificially controlled environments. Nevertheless, the efficacy of the captive strategy remains uncertain, with the potential to impact the health of spotted seals through alterations in gut microbiota. In this study, PacBio sequencing based on the full-length of the bacterial 16S rRNA gene was applied to faeces from captive and wild spotted seals, thereby providing a first reference for the gut microbiota profile of spotted seals at the species scale. The gut microbiota of captive spotted seals was found to be more diverse than that of the wild population. The gut microbiota of spotted seals exhibited notable variation due to captive breeding, with an enrichment of Firmicutes and a reduction in Proteobacteria. The results of the co-occurrence network analysis indicated that the gut microbiota of captive spotted seals exhibited a greater degree of complexity and stability in comparison to that observed in their wild counterparts. The analysis of community assembly mechanisms revealed an increased determinism for the gut microbiota of captive individuals, with a concomitant decrease in the contribution of drift. Furthermore, the results of the predicted functions indicated a reduction in stress responses and an enhanced ability to metabolise sugars in the gut microbiota of captive spotted seals. In conclusion, the results of this study provide evidence that the current captive breeding strategy is an effective approach for improving the gut microbiota of spotted seals. Furthermore, this study demonstrates the potential of monitoring the gut microbiota to assess the health of marine mammals and inform conservation strategies for endangered species.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
4
|
Kumar KR, Cowley MJ, Davis RL. Next-Generation Sequencing and Emerging Technologies. Semin Thromb Hemost 2024; 50:1026-1038. [PMID: 38692283 DOI: 10.1055/s-0044-1786397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Genetic sequencing technologies are evolving at a rapid pace with major implications for research and clinical practice. In this review, the authors provide an updated overview of next-generation sequencing (NGS) and emerging methodologies. NGS has tremendously improved sequencing output while being more time and cost-efficient in comparison to Sanger sequencing. The authors describe short-read sequencing approaches, such as sequencing by synthesis, ion semiconductor sequencing, and nanoball sequencing. Third-generation long-read sequencing now promises to overcome many of the limitations of short-read sequencing, such as the ability to reliably resolve repeat sequences and large genomic rearrangements. By combining complementary methods with massively parallel DNA sequencing, a greater insight into the biological context of disease mechanisms is now possible. Emerging methodologies, such as advances in nanopore technology, in situ nucleic acid sequencing, and microscopy-based sequencing, will continue the rapid evolution of this area. These new technologies hold many potential applications for hematological disorders, with the promise of precision and personalized medical care in the future.
Collapse
Affiliation(s)
- Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, Australia
| | - Mark J Cowley
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Computational Biology Group, Children's Cancer Institute, University of New South Wales, Randwick, New South Wales, Australia
| | - Ryan L Davis
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
5
|
Ling X, Pan L, Li L, Huang Y, Wang C, Huang C, Long Y, Zhai N, Xiao Q, Luo J, Tang R, Meng L, Huang Y. Detection of hemophilia A genetic variants using third-generation long-read sequencing. Clin Chim Acta 2024; 562:119884. [PMID: 39038592 DOI: 10.1016/j.cca.2024.119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked recessive genetic disorder caused by pathogenic variations of the factor VIII -encoding gene, F8 gene. Due to the large size and diverse types of variations in the F8 gene, causative mutations in F8 cannot be simultaneously detected in one step by traditional molecular analysis, and genetic molecular diagnosis and prenatal screening of HA still face significant difficulties and challenges in clinical practice. Therefore, we aimed to develop and validate an efficient, accurate, and time-saving method for the genetic detection of HA. METHODS A comprehensive analysis of hemophilia A (CAHEA) method based on long-range PCR and long-read sequencing (LRS) was used to detect F8 gene mutations in 14 clinical HA samples. The LRS results were compared with those of the conventional methods to evaluate the accuracy and sensitivity of the proposed approach. RESULTS The CAHEA method successfully identified 14 F8 variants in all probands, including 3 small insertion deletions, 4 single nucleotide variants, and 7 intron 22 inversions in a "one-step" manner, of which 2 small deletions have not been reported previously. Moreover, this method provided an opportunity to analyze the mechanism of rearrangement and the pathogenicity of F8 variants. The LRS results were validated and found to be in 100% agreement with those obtained using the conventional method. CONCLUSION Our proposed LRS-based F8 gene detection method is an accurate and reproducible genetic screening and diagnostic method with significant clinical value. It provides efficient, comprehensive, and accurate genetic screening and diagnostic services for individuals at high risk of HA as well as for premarital and prenatal populations.
Collapse
Affiliation(s)
- Xiaoting Ling
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Liqiu Pan
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Linlin Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yunhua Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Chenghan Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Chaoyu Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yan Long
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Ningneng Zhai
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Qingxing Xiao
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Jiaqi Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Rongheng Tang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Li Meng
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China
| | - Yifang Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, China.
| |
Collapse
|
6
|
Wu Y, Zhuang J, Song Y, Gao X, Chu J, Han S. Advances in single-cell sequencing technology in microbiome research. Genes Dis 2024; 11:101129. [PMID: 38545125 PMCID: PMC10965480 DOI: 10.1016/j.gendis.2023.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 11/11/2024] Open
Abstract
With the rapid development of histological techniques and the widespread application of single-cell sequencing in eukaryotes, researchers desire to explore individual microbial genotypes and functional expression, which deepens our understanding of microorganisms. In this review, the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well. Moreover, the characteristics of the currently emerging microbial single-cell sequencing (Microbe-seq) technology were summarized, and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status. Despite its mature development, the Microbe-seq technology was still in the optimization stage. A retrospective study was conducted, aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technology.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xinyi Gao
- Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| |
Collapse
|
7
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
8
|
Mustafa AS. Whole Genome Sequencing: Applications in Clinical Bacteriology. Med Princ Pract 2024; 33:185-197. [PMID: 38402870 PMCID: PMC11221363 DOI: 10.1159/000538002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
The success in determining the whole genome sequence of a bacterial pathogen was first achieved in 1995 by determining the complete nucleotide sequence of Haemophilus influenzae Rd using the chain-termination method established by Sanger et al. in 1977 and automated by Hood et al. in 1987. However, this technology was laborious, costly, and time-consuming. Since 2004, high-throughput next-generation sequencing technologies have been developed, which are highly efficient, require less time, and are cost-effective for whole genome sequencing (WGS) of all organisms, including bacterial pathogens. In recent years, the data obtained using WGS technologies coupled with bioinformatics analyses of the sequenced genomes have been projected to revolutionize clinical bacteriology. WGS technologies have been used in the identification of bacterial species, strains, and genotypes from cultured organisms and directly from clinical specimens. WGS has also helped in determining resistance to antibiotics by the detection of antimicrobial resistance genes and point mutations. Furthermore, WGS data have helped in the epidemiological tracking and surveillance of pathogenic bacteria in healthcare settings as well as in communities. This review focuses on the applications of WGS in clinical bacteriology.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
9
|
Liu X, Zheng J, Ding J, Wu J, Zuo F, Zhang G. When Livestock Genomes Meet Third-Generation Sequencing Technology: From Opportunities to Applications. Genes (Basel) 2024; 15:245. [PMID: 38397234 PMCID: PMC10888458 DOI: 10.3390/genes15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Third-generation sequencing technology has found widespread application in the genomic, transcriptomic, and epigenetic research of both human and livestock genetics. This technology offers significant advantages in the sequencing of complex genomic regions, the identification of intricate structural variations, and the production of high-quality genomes. Its attributes, including long sequencing reads, obviation of PCR amplification, and direct determination of DNA/RNA, contribute to its efficacy. This review presents a comprehensive overview of third-generation sequencing technologies, exemplified by single-molecule real-time sequencing (SMRT) and Oxford Nanopore Technology (ONT). Emphasizing the research advancements in livestock genomics, the review delves into genome assembly, structural variation detection, transcriptome sequencing, and epigenetic investigations enabled by third-generation sequencing. A comprehensive analysis is conducted on the application and potential challenges of third-generation sequencing technology for genome detection in livestock. Beyond providing valuable insights into genome structure analysis and the identification of rare genes in livestock, the review ventures into an exploration of the genetic mechanisms underpinning exemplary traits. This review not only contributes to our understanding of the genomic landscape in livestock but also provides fresh perspectives for the advancement of research in this domain.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Junyuan Zheng
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jialan Ding
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
10
|
Kim C, Pongpanich M, Porntaveetus T. Unraveling metagenomics through long-read sequencing: a comprehensive review. J Transl Med 2024; 22:111. [PMID: 38282030 PMCID: PMC10823668 DOI: 10.1186/s12967-024-04917-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024] Open
Abstract
The study of microbial communities has undergone significant advancements, starting from the initial use of 16S rRNA sequencing to the adoption of shotgun metagenomics. However, a new era has emerged with the advent of long-read sequencing (LRS), which offers substantial improvements over its predecessor, short-read sequencing (SRS). LRS produces reads that are several kilobases long, enabling researchers to obtain more complete and contiguous genomic information, characterize structural variations, and study epigenetic modifications. The current leaders in LRS technologies are Pacific Biotechnologies (PacBio) and Oxford Nanopore Technologies (ONT), each offering a distinct set of advantages. This review covers the workflow of long-read metagenomics sequencing, including sample preparation (sample collection, sample extraction, and library preparation), sequencing, processing (quality control, assembly, and binning), and analysis (taxonomic annotation and functional annotation). Each section provides a concise outline of the key concept of the methodology, presenting the original concept as well as how it is challenged or modified in the context of LRS. Additionally, the section introduces a range of tools that are compatible with LRS and can be utilized to execute the LRS process. This review aims to present the workflow of metagenomics, highlight the transformative impact of LRS, and provide researchers with a selection of tools suitable for this task.
Collapse
Affiliation(s)
- Chankyung Kim
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Graduate Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Cancer and Inflammation, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
11
|
Chen L, Song Z, Zhou X, Yang G, Yu G. Pathogenic bacteria and fungi in bioaerosols from specialized hospitals in Shandong province, East China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122922. [PMID: 37984476 DOI: 10.1016/j.envpol.2023.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Bacteria and fungi are abundant and ubiquitous in bioaerosols in hospital environments. Understanding the distribution and diversity of microbial communities within bioaerosols is critical for mitigating their detrimental effects. Our knowledge on the composition of bacteria or fungi in bioaerosols is limited, especially the potential pathogens present in fine particulate matter (PM2.5) from specialized hospitals. Thirty p.m.2.5 filter samples were collected from five hospitals (i.e., oral, dermatology, chest, eye, and general hospitals) in Shandong Province, East China. The diversity of bacteria and fungi was analyzed at the species level using single-molecule real-time sequencing of the 16 S and internal transcribed spacer 1 (ITS) ribosomal genes, respectively. Significant differences were detected across sampling sites in terms of microbial diversity and community composition in PM2.5 as well as pollution concentrations. The range of PM2.5 concentrations observed in hospital halls was higher, ranging from 39.0 to 46.2 μg/m3, compared to the wards where the concentrations ranged from 10.7 to 25.2 μg/m3. Furthermore, microbial variations in PM2.5 bioaerosols were associated with hospital type. The most dominant pathogens identified were Vibrio metschnikovii, Staphylococcus epidermidis, Staphylococcus haemolyticus, Fusarium pseudensiforme, and Aspergillus ruber. Among these, A. ruber was identified as an opportunistic fungus in a hospital setting for the first time. Nine potentially novel strains of F. pseudensiforme, showing 84.5%-92.0% ITS sequence similarity to known Fusarium isolates, were identified in PM2.5 samples from all hospitals (excluding an eye hospital). This study highlights the importance of hospital environments in shaping microbial aerosol communities. To the best of our knowledge, this is the first study to provide insights into the bacterial and fungal biodiversity of PM2.5 in specialized hospitals, enriching research in healthcare environmental microbiology and carrying significant public health implications.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhicheng Song
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xintian Zhou
- Department of Pediatrics, Taian Maternal and Child Health Hospital, Taian 271000, China
| | - Guiwen Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guanliu Yu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
Liu S, Yu YP, Ren BG, Ben-Yehezkel T, Obert C, Smith M, Wang W, Ostrowska A, Soto-Gutierrez A, Luo JH. Long-read single-cell sequencing reveals expressions of hypermutation clusters of isoforms in human liver cancer cells. eLife 2024; 12:RP87607. [PMID: 38206124 PMCID: PMC10945587 DOI: 10.7554/elife.87607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Yan-Ping Yu
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Bao-Guo Ren
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | | | | | - Mat Smith
- Element Biosciences IncSan DiegoUnited States
| | - Wenjia Wang
- Biostatistics, University of PittsburghPittsburghUnited States
| | - Alina Ostrowska
- Department of Pathology, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Jian-Hua Luo
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| |
Collapse
|
13
|
Liu S, Yu YP, Ren BG, Ben-Yehezkel T, Obert C, Smith M, Wang W, Ostrowska A, Soto-Gutierrez A, Luo JH. Long-read single-cell sequencing reveals expressions of hypermutation clusters of isoforms in human liver cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532991. [PMID: 36993628 PMCID: PMC10055174 DOI: 10.1101/2023.03.16.532991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate Long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPseq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection (UMAP) analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen (HLA) molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPseq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- High Throughput Genome Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- High Throughput Genome Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Bao-Guo Ren
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- High Throughput Genome Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Tuval Ben-Yehezkel
- Element Biosciences, Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA 92121
| | - Caroline Obert
- Element Biosciences, Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA 92121
| | - Mat Smith
- Element Biosciences, Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA 92121
| | - Wenjia Wang
- Biostatistics, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- High Throughput Genome Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
- Pittsburgh Liver Research Center, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261
| |
Collapse
|
14
|
Li Z, Zhou X, Liao D, Liu R, Zhao X, Wang J, Zhong Q, Zeng Z, Peng Y, Tan Y, Yang Z. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials. Front Cell Infect Microbiol 2023; 13:1180194. [PMID: 37662009 PMCID: PMC10471985 DOI: 10.3389/fcimb.2023.1180194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Pseudomonas aeruginosa (P.aeruginosa) is an important opportunistic pathogen with broad environmental adaptability and complex drug resistance. Single-molecule real-time (SMRT) sequencing technique has longer read-length sequences, more accuracy, and the ability to identify epigenetic DNA alterations. Methods This study applied SMRT technology to sequence a clinical strain P. aeruginosa PA3 to obtain its genome sequence and methylation modification information. Genomic, comparative, pan-genomic, and epigenetic analyses of PA3 were conducted. Results General genome annotations of PA3 were discovered, as well as information about virulence factors, regulatory proteins (RPs), secreted proteins, type II toxin-antitoxin (TA) pairs, and genomic islands. A genome-wide comparison revealed that PA3 was comparable to other P. aeruginosa strains in terms of identity, but varied in areas of horizontal gene transfer (HGT). Phylogenetic analysis showed that PA3 was closely related to P. aeruginosa 60503 and P. aeruginosa 8380. P. aeruginosa's pan-genome consists of a core genome of roughly 4,300 genes and an accessory genome of at least 5,500 genes. The results of the epigenetic analysis identified one main methylation sites, N6-methyladenosine (m6A) and 1 motif (CATNNNNNNNTCCT/AGGANNNNNNNATG). 16 meaningful methylated sites were picked. Among these, purH, phaZ, and lexA are of great significance playing an important role in the drug resistance and biological environment adaptability of PA3, and the targeting of these genes may benefit further antibacterial studies. Disucssion This study provided a detailed visualization and DNA methylation information of the PA3 genome and set a foundation for subsequent research into the molecular mechanism of DNA methyltransferase-controlled P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Zijiao Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xiang Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xia Zhao
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Mou CY, Li Q, Huang ZP, Ke HY, Zhao H, Zhao ZM, Duan YL, Li HD, Xiao Y, Qian ZM, Du J, Zhou J, Zhang L. PacBio single-molecule long-read sequencing provides new insights into the complexity of full-length transcripts in oriental river prawn, macrobrachium nipponense. BMC Genomics 2023; 24:340. [PMID: 37340366 DOI: 10.1186/s12864-023-09442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Oriental river prawn (Macrobrachium nipponense) is one of the most dominant species in shrimp farming in China, which is a rich source of protein and contributes to a significant impact on the quality of human life. Thus, more complete and accurate annotation of gene models are important for the breeding research of oriental river prawn. RESULTS A full-length transcriptome of oriental river prawn muscle was obtained using the PacBio Sequel platform. Then, 37.99 Gb of subreads were sequenced, including 584,498 circular consensus sequences, among which 512,216 were full length non-chimeric sequences. After Illumina-based correction of long PacBio reads, 6,599 error-corrected isoforms were identified. Transcriptome structural analysis revealed 2,263 and 2,555 alternative splicing (AS) events and alternative polyadenylation (APA) sites, respectively. In total, 620 novel genes (NGs), 197 putative transcription factors (TFs), and 291 novel long non-coding RNAs (lncRNAs) were identified. CONCLUSIONS In summary, this study offers novel insights into the transcriptome complexity and diversity of this prawn species, and provides valuable information for understanding the genomic structure and improving the draft genome annotation of oriental river prawn.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhi-Peng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hong-Yu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhong-Meng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yuan-Liang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hua-Dong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yu Xiao
- Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Zhou-Ming Qian
- Chengdu Eaters Agricultural Group Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
16
|
Gonzalez-Garcia L, Guevara-Barrientos D, Lozano-Arce D, Gil J, Díaz-Riaño J, Duarte E, Andrade G, Bojacá JC, Hoyos-Sanchez MC, Chavarro C, Guayazan N, Chica LA, Buitrago Acosta MC, Bautista E, Trujillo M, Duitama J. New algorithms for accurate and efficient de novo genome assembly from long DNA sequencing reads. Life Sci Alliance 2023; 6:e202201719. [PMID: 36813568 PMCID: PMC9946810 DOI: 10.26508/lsa.202201719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Building de novo genome assemblies for complex genomes is possible thanks to long-read DNA sequencing technologies. However, maximizing the quality of assemblies based on long reads is a challenging task that requires the development of specialized data analysis techniques. We present new algorithms for assembling long DNA sequencing reads from haploid and diploid organisms. The assembly algorithm builds an undirected graph with two vertices for each read based on minimizers selected by a hash function derived from the k-mer distribution. Statistics collected during the graph construction are used as features to build layout paths by selecting edges, ranked by a likelihood function. For diploid samples, we integrated a reimplementation of the ReFHap algorithm to perform molecular phasing. We ran the implemented algorithms on PacBio HiFi and Nanopore sequencing data taken from haploid and diploid samples of different species. Our algorithms showed competitive accuracy and computational efficiency, compared with other currently used software. We expect that this new development will be useful for researchers building genome assemblies for different species.
Collapse
Affiliation(s)
- Laura Gonzalez-Garcia
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | | | - Daniela Lozano-Arce
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Juanita Gil
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Jorge Díaz-Riaño
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Erick Duarte
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Germán Andrade
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Juan Camilo Bojacá
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | | | - Christian Chavarro
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Natalia Guayazan
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | | | - Edwin Bautista
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Miller Trujillo
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
17
|
Oh Y, Mun S, Choi YB, Jo H, Lee DG, Han K. Genome-Wide Pathway Exploration of the Epidermidibacterium keratini EPI-7 T. Microorganisms 2023; 11:870. [PMID: 37110293 PMCID: PMC10143877 DOI: 10.3390/microorganisms11040870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.
Collapse
Affiliation(s)
- Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - HyungWoo Jo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Gasan Digital 1-ro, Geumcheon-gu, Seoul 08507, Republic of Korea
| |
Collapse
|
18
|
Bao M, Wang X, Sun R, Wang Z, Li J, Jiang T, Lin A, Wang H, Feng J. Full-Length Transcriptome of the Great Himalayan Leaf-Nosed Bats ( Hipposideros armiger) Optimized Genome Annotation and Revealed the Expression of Novel Genes. Int J Mol Sci 2023; 24:ijms24054937. [PMID: 36902366 PMCID: PMC10003721 DOI: 10.3390/ijms24054937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The Great Himalayan Leaf-nosed bat (Hipposideros armiger) is one of the most representative species of all echolocating bats and is an ideal model for studying the echolocation system of bats. An incomplete reference genome and limited availability of full-length cDNAs have hindered the identification of alternatively spliced transcripts, which slowed down related basic studies on bats' echolocation and evolution. In this study, we analyzed five organs from H. armiger for the first time using PacBio single-molecule real-time sequencing (SMRT). There were 120 GB of subreads generated, including 1,472,058 full-length non-chimeric (FLNC) sequences. A total of 34,611 alternative splicing (AS) events and 66,010 Alternative Polyadenylation (APA) sites were detected by transcriptome structural analysis. Moreover, a total of 110,611 isoforms were identified, consisting of 52% new isoforms of known genes and 5% of novel gene loci, as well as 2112 novel genes that have not been annotated before in the current reference genome of H. armiger. Furthermore, several key novel genes, including Pol, RAS, NFKB1, and CAMK4, were identified as being associated with nervous, signal transduction, and immune system processes, which may be involved in regulating the auditory nervous perception and immune system that helps bats to regulate in echolocation. In conclusion, the full-length transcriptome results optimized and replenished existing H. armiger genome annotation in multiple ways and offer advantages for newly discovered or previously unrecognized protein-coding genes and isoforms, which can be used as a reference resource.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.W.); (J.F.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Correspondence: (H.W.); (J.F.)
| |
Collapse
|
19
|
Fang Z, Liu J, Wu X, Zhang Y, Jia H, Shi Y. Full-length transcriptome of in Medicago sativa L. roots in response to drought stress. Front Genet 2023; 13:1086356. [PMID: 36685877 PMCID: PMC9848396 DOI: 10.3389/fgene.2022.1086356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Alfalfa (Medicago sativa L.), serves as a legume with high drought tolerance, is a major forage crop with a high biomass of production. However, the molecular mechanism of Alfalfa in response to drought stress are still unclear. Results: We constructed the first full-length transcriptome for Alfalfa root. 21.53Gb clean data were obtained by further data filtering, in which incorporate 566,076 reads of Insert (ROI), and 409,291 full length reads non-Chimeric (FLNC) sequences. Combined with second-generation sequencing (SGS), there were 2615, 6011, and 4617 differentially expressed genes (DEGs) in three comparisons. KEGG pathway analysis showed enrichment of ribosome, glutathione metabolism, and biosynthesis of amino acids are among the DEGs. The majority of transcription factors (TFs) from DEGs were AP2/ERF-ERF (37), C2H2 (32), and bHLH (22) bZIP (22), followed by C3H (19), MYB (18), WRKY (18), GRAS (16), and NAC (15). 32 C2H2 genes were differentially expressed in three groups. In addition, TFs annotated as C3H (19), MYB (18), GRAS (16), and NAC (15) also changed significantly in expression in the three comparisons. We found 24 genes participate in the abscisic acid (ABA) and auxin hormone signaling pathway in response to drought stress, and monitored the expression patterns of these related genes. Conclusion: The present study enhanced our understanding of the genetic diversity and complexity, and provides greater insight into the fundamental transcriptome reprogramming of Alfalfa under drought.
Collapse
|
20
|
Zhao Q, Lin Z, Chen J, Xie Z, Wang J, Feng K, Lin W, Li H, Hu Z, Chen W, Chen F, Junaid M, Zhang H, Xie Q, Zhang X. Chromosome-level genome assembly of goose provides insight into the adaptation and growth of local goose breeds. Gigascience 2022; 12:giad003. [PMID: 36734171 PMCID: PMC9896136 DOI: 10.1093/gigascience/giad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/04/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Anatidae contains numerous waterfowl species with great economic value, but the genetic diversity basis remains insufficiently investigated. Here, we report a chromosome-level genome assembly of Lion-head goose (Anser cygnoides), a native breed in South China, through the combination of PacBio, Bionano, and Hi-C technologies. FINDINGS The assembly had a total genome size of 1.19 Gb, consisting of 1,859 contigs with an N50 length of 20.59 Mb, generating 40 pseudochromosomes, representing 97.27% of the assembled genome, and identifying 21,208 protein-coding genes. Comparative genomic analysis revealed that geese and ducks diverged approximately 28.42 million years ago, and geese have undergone massive gene family expansion and contraction. To identify genetic markers associated with body weight in different geese breeds, including Wuzong goose, Huangzong goose, Magang goose, and Lion-head goose, a genome-wide association study was performed, yielding an average of 1,520.6 Mb of raw data that detected 44,858 single-mucleotide polymorphisms (SNPs). Genome-wide association study showed that 6 SNPs were significantly associated with body weight and 25 were potentially associated. The significantly associated SNPs were annotated as LDLRAD4, GPR180, and OR, enriching in growth factor receptor regulation pathways. CONCLUSIONS We present the first chromosome-level assembly of the Lion-head goose genome, which will expand the genomic resources of the Anatidae family, providing a basis for adaptation and evolution. Candidate genes significantly associated with different goose breeds may serve to understand the underlying mechanisms of weight differences.
Collapse
Affiliation(s)
- Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhenping Lin
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou, Guangdong, 515000, China
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou, Guangdong, 515000, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, East Lansing, MI 48823, USA
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
21
|
Gregori J, Colomer-Castell S, Campos C, Ibañez-Lligoña M, Garcia-Cehic D, Rando-Segura A, Adombie CM, Pintó R, Guix S, Bosch A, Domingo E, Gallego I, Perales C, Cortese MF, Tabernero D, Buti M, Riveiro-Barciela M, Esteban JI, Rodriguez-Frias F, Quer J. Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:14654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| | - Marta Ibañez-Lligoña
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Ariadna Rando-Segura
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Caroline Melanie Adombie
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Institute of Agropastoral Management, University Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
| | - Rosa Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Susanna Guix
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, 08028 Barcelona, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM) Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Buti
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Mar Riveiro-Barciela
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Next generation sequencing technologies to explore the diversity of germplasm resources: achievements and trends in tomato. Comput Struct Biotechnol J 2022; 20:6250-6258. [PMID: 36420160 PMCID: PMC9676195 DOI: 10.1016/j.csbj.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022] Open
Abstract
Tomato is one of the major vegetable crops grown worldwide and a model species for genetic and biological research. Progress in genomic technologies made possible the development of forefront methods for high-scale sequencing, providing comprehensive insight into the genetic architecture of germplasm resources. This review revisits next-generation sequencing strategies and applications to investigate the diversity of tomato, describing the common platforms used for SNP genotyping of large collections, de novo sequencing, and whole genome resequencing. Significant findings in evolutionary history are outlined, thus discussing how genomics has provided new hints about the processes behind domestication. Finally, achievement and perspectives on pan-genome construction and graphical pan-genome development toward precise mining of the natural variation to be exploited for breeding purposes are presented.
Collapse
|
23
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
24
|
Zhang T, Wen H, Xu D, Lv G, Zhou Y. PacBio Full-Length and Illumina Transcriptomes of the Gill Reveal the Molecular Response of Corbicula fluminea under Aerial Exposure. Int J Mol Sci 2022; 23:11474. [PMID: 36232776 PMCID: PMC9570311 DOI: 10.3390/ijms231911474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Air exposure is a common stress for Corbicula fluminea, an economically important freshwater shellfish consumed in China, during aquaculture and transportation. However, little is known about its molecular responses to air exposure. Therefore, this study used a combination of PacBio full-length and Illumina transcriptomes to investigate its molecular responses to air exposure. A total of 36,772 transcripts were obtained using PacBio sequencing. Structural analysis identified 32,069 coding sequences, 1906 transcription factors, 8873 simple sequence repeats, and 17,815 long non-coding RNAs. Subcellular localization analysis showed that most transcripts were located in the cytoplasm and nucleus. After 96-h of air exposure, 210 differentially expressed genes (DEGs) in the gill were obtained via Illumina sequencing. Among these DEGs, most of the genes related to glycolysis, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism were upregulated. Additionally, many DEGs associated with immunity, cytoskeleton reorganization, autophagy, and ferroptosis were identified. These findings indicated that metabolic strategy change, immune response, cytoskeleton reconstruction, autophagy, and ferroptosis might be the important mechanisms that C. fluminea use to cope with air exposure. This study will enrich the gene resources of C. fluminea and provide valuable data for studying the molecular mechanisms coping with air exposure in C. fluminea and other freshwater mollusks.
Collapse
Affiliation(s)
| | | | | | | | - Yanfeng Zhou
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
25
|
Ju Y, Pu M, Sun K, Song G, Geng J. Nanopore Electrochemistry for Pathogen Detection. Chem Asian J 2022; 17:e202200774. [PMID: 36069587 DOI: 10.1002/asia.202200774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Pathogen infections have seriously threatened human health, and there is an urgent demand for rapid and efficient pathogen identification to provide instructions in clinical diagnosis and therapeutic intervention. Recently, nanopore technology, a rapidly maturing technology which delivers ultrasensitive sensing and high throughput in real-time and at low cost, has achieved success in pathogen detection. Furthermore, the remarkable development of nanopore sequencing, for example, the MinION sequencer from Oxford Nanopore Technologies (ONT) as a competitive sequencing technology, has facilitated the rapid analysis of disease-related microbiomes at the whole-genome level and on a large scale. Here, we highlighted recent advances in nanopore approaches for pathogen detection at the single-molecule level. We also overviewed the applications of nanopore sequencing in pathogenic bacteria identification and diagnosis. In the end, we discussed the challenges and future developments of nanopore technology as promising tools for the management of infections, which may be helpful to aid understanding as well as decision-making.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University, Sichuan University Library, CHINA
| | - Mengjun Pu
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Ke Sun
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Guiqin Song
- North Sichuan Medical College [Search North Sichuan Medical College]: North Sichuan Medical University, Shool of Basic Medical Sciences and Forensic Medicine, CHINA
| | - Jia Geng
- Sichuan University, State Key Laboratory of Biotherapy, No 17 Section 3 of South Renmin Rd, 610040, Chengdu, CHINA
| |
Collapse
|
26
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
27
|
Mining of Thousands of Prokaryotic Genomes Reveals High Abundance of Prophages with a Strictly Narrow Host Range. mSystems 2022; 7:e0032622. [PMID: 35880895 PMCID: PMC9426530 DOI: 10.1128/msystems.00326-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phages and prophages are one of the principal modulators of microbial populations. However, much of their diversity is still poorly understood. Here, we extracted 33,624 prophages from 13,713 complete prokaryotic genomes to explore the prophage diversity and their relationships with their host. Our results reveal that prophages were present in 75% of the genomes studied. In addition, Enterobacterales were significantly enriched in prophages. We also found that pathogens are a significant reservoir of prophages. Finally, we determined that the prophage relatedness and the range of genomic hosts were delimited by the evolutionary relationships of their hosts. On a broader level, we got insights into the prophage population, identified in thousands of publicly available prokaryotic genomes, by comparing the prophage distribution and relatedness between them and their hosts. IMPORTANCE Phages and prophages play an essential role in controlling their host populations either by modulating the host abundance or providing them with genes that benefit the host. The constant growth in next-generation sequencing technology has caused the development of powerful computational tools to identify phages and prophages with high precision. Making it possible to explore the prophage populations integrated into host genomes on a large scale. However, it is still a new and under-explored area, and efforts are still required to identify prophage populations to understand their dynamics with their hosts.
Collapse
|
28
|
Schaal W, Ameur A, Olsson-Strömberg U, Hermanson M, Cavelier L, Spjuth O. Migrating to Long-Read Sequencing for Clinical Routine BCR-ABL1 TKI Resistance Mutation Screening. Cancer Inform 2022; 21:11769351221110872. [PMID: 35860345 PMCID: PMC9290162 DOI: 10.1177/11769351221110872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/22/2022] [Indexed: 11/15/2022] Open
Abstract
Objective The aim of this project was to implement long-read sequencing for BCR-ABL1 TKI resistance mutation screening in a clinical setting for patients undergoing treatment for chronic myeloid leukemia. Materials and Methods Processes were established for registering and transferring samples from the clinic to an academic sequencing facility for long-read sequencing. An automated analysis pipeline for detecting mutations was established, and an information system was implemented comprising features for data management, analysis and visualization. Clinical validation was performed by identifying BCR-ABL1 TKI resistance mutations by Sanger and long-read sequencing in parallel. The developed software is available as open source via GitHub at https://github.com/pharmbio/clamp. Results The information system enabled traceable transfer of samples from the clinic to the sequencing facility, robust and automated analysis of the long-read sequence data, and communication of results from sequence analysis in a reporting format that could be easily interpreted and acted upon by clinical experts. In a validation study, all 17 resistance mutations found by Sanger sequencing were also detected by long-read sequencing. An additional 16 mutations were found only by long-read sequencing, all of them with frequencies below the limit of detection for Sanger sequencing. The clonal distributions of co-existing mutations were automatically resolved through the long-read data analysis. After the implementation and validation, the clinical laboratory switched their routine protocol from using Sanger to long-read sequencing for this application. Conclusions Long-read sequencing delivers results with higher sensitivity compared to Sanger sequencing and enables earlier detection of emerging TKI resistance mutations. The developed processes, analysis workflow, and software components lower barriers for adoption and could be extended to other applications.
Collapse
Affiliation(s)
- Wesley Schaal
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Pincer Bio AB, Uppsala, Sweden
| | - Adam Ameur
- Pincer Bio AB, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Monica Hermanson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Pincer Bio AB, Uppsala, Sweden
| |
Collapse
|
29
|
Yamauchi K, Sato M, Osawa L, Matsuda S, Komiyama Y, Nakakuki N, Takada H, Katoh R, Muraoka M, Suzuki Y, Tatsumi A, Miura M, Takano S, Amemiya F, Fukasawa M, Nakayama Y, Yamaguchi T, Inoue T, Maekawa S, Enomoto N. Analysis of direct-acting antiviral-resistant hepatitis C virus haplotype diversity by single-molecule and long-read sequencing. Hepatol Commun 2022; 6:1634-1651. [PMID: 35357088 PMCID: PMC9234623 DOI: 10.1002/hep4.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
The method of analyzing individual resistant hepatitis C virus (HCV) by a combination of haplotyping and resistance-associated substitution (RAS) has not been fully elucidated because conventional sequencing has only yielded short and fragmented viral genomes. We performed haplotype analysis of HCV mutations in 12 asunaprevir/daclatasvir treatment-failure cases using the Oxford Nanopore sequencer. This enabled single-molecule long-read sequencing using rolling circle amplification (RCA) for correction of the sequencing error. RCA of the circularized reverse-transcription polymerase chain reaction products successfully produced DNA longer than 30 kilobase pairs (kb) containing multiple tandem repeats of a target 3 kb HCV genome. The long-read sequencing of these RCA products could determine the original sequence of the target single molecule as the consensus nucleotide sequence of the tandem repeats and revealed the presence of multiple viral haplotypes with the combination of various mutations in each host. In addition to already known signature RASs, such as NS3-D168 and NS5A-L31/Y93, there were various RASs specific to a different haplotype after treatment failure. The distribution of viral haplotype changed over time; some haplotypes disappeared without acquiring resistant mutations, and other haplotypes, which were not observed before treatment, appeared after treatment. Conclusion: The combination of various mutations other than the known signature RAS was suggested to influence the kinetics of individual HCV quasispecies in the direct-acting antiviral treatment. HCV haplotype dynamic analysis will provide novel information on the role of HCV diversity within the host, which will be useful for elucidating the pathological mechanism of HCV-related diseases.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of YamanashiYamanashiJapan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Integrated SMRT and Illumina Sequencing Provide New Insights into Crocin Biosynthesis of Gardenia jasminoides. Int J Mol Sci 2022; 23:ijms23116321. [PMID: 35683000 PMCID: PMC9181021 DOI: 10.3390/ijms23116321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Crocins are valuable bioactive components of gardenia fruit, and their biosynthesis and accumulation have attracted widespread interest. Studies have investigated the biosynthesis and accumulation of crocin based on Illumina sequencing, but there is a lack of reports based on full-length transcriptome sequencing. Utilising SMRT sequencing and high-performance liquid chromatography (HPLC), we explored crocin biosynthesis and accumulation in the fruit of Gardenia jasminoides. HPLC analysis showed that crocins specifically exist in fruit and that the content of crocins increases gradually during fruit development. SMRT sequencing generated 46,715 high-quality full-length isoforms, including 5230 novel isoforms that are not present in the G. jasminoides genome. Furthermore, a total of 46 genes and 91 lncRNAs were involved in the biosynthesis and accumulation of crocin. The qRT-PCR indicated that genes involved in crocin biosynthesis reached a peak in the NOV stage. These findings contributed to our understanding of crocin biosynthesis and accumulation.
Collapse
|
31
|
Whole-Genome Sequence and Comparative Analysis of Trichoderma asperellum ND-1 Reveal Its Unique Enzymatic System for Efficient Biomass Degradation. Catalysts 2022. [DOI: 10.3390/catal12040437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The lignocellulosic enzymes of Trichoderma asperellum have been intensely investigated toward efficient conversion of biomass into high-value chemicals/industrial products. However, lack of genome data is a remarkable hurdle for hydrolase systems studies. The secretory enzymes of newly isolated T. asperellum ND-1 during lignocellulose degradation are currently poorly known. Herein, a high-quality genomic sequence of ND-1, obtained by both Illumina HiSeq 2000 sequencing platforms and PacBio single-molecule real-time, has an assembly size of 35.75 Mb comprising 10,541 predicted genes. Secretome analysis showed that 895 proteins were detected, with 211 proteins associated with carbohydrate-active enzymes (CAZymes) responsible for biomass hydrolysis. Additionally, T. asperellum ND-1, T. atroviride IMI 206040, and T. virens Gv-298 shared 801 orthologues that were not identified in T. reesei QM6a, indicating that ND-1 may play critical roles in biological-control. In-depth analysis suggested that, compared with QM6a, the genome of ND-1 encoded a unique enzymatic system, especially hemicellulases and chitinases. Moreover, after comparative analysis of lignocellulase activities of ND-1 and other fungi, we found that ND-1 displayed higher hemicellulases (particularly xylanases) and comparable cellulases activities. Our analysis, combined with the whole-genome sequence information, offers a platform for designing advanced T. asperellum ND-1 strains for industrial utilizations, such as bioenergy production.
Collapse
|
32
|
Zhang H, Liu Z, Hu A, Wu H, Zhu J, Wang F, Cao P, Yang X, Zhang H. Full-Length Transcriptome Analysis of the Halophyte Nitraria sibirica Pall. Genes (Basel) 2022; 13:genes13040661. [PMID: 35456467 PMCID: PMC9032868 DOI: 10.3390/genes13040661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Nitraria sibirica Pall. is one of the pioneer tree species in saline–alkali areas due to its extreme salt tolerance. However, the lack of information on its genome limits the further exploration of the molecular mechanisms in N. sibirica under salt stress. Methods: In this study, we used single-molecule real-time (SMRT) technology based on the PacBio Iso-Seq platform to obtain transcriptome data from N. sibirica under salt treatment for the first time, which is helpful for our in-depth analysis of the salt tolerance and molecular characteristics of N. sibirica. Results: Our results suggested that a total of 234,508 circular consensus sequences (CCSs) with a mean read length of 2121 bp were obtained from the 19.26 Gb raw data. Furthermore, based on transcript cluster analysis, 93,713 consensus isoforms were obtained, including 92,116 high-quality isoforms. After removing redundant sequences, 49,240 non-redundant transcripts were obtained from high-quality isoforms. A total of 37,261 SSRs, 1816 LncRNAs and 47,314 CDSs, of which 40,160 carried complete ORFs, were obtained. Based on our transcriptome data, we also analyzed the coding genes of H+-PPase, and the results of both bioinformatics and functional analyses indicated that the gene prediction via full-length transcripts obtained by SMRT technology is reliable and effective. In summary, our research data obtained by SMRT technology provides more reliable and accurate information for the further analysis of the regulatory network and molecular mechanism of N. sibirica under salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Zhen Liu
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Aishuang Hu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China
| | - Haiwen Wu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Jianfeng Zhu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Pingping Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Xiuyan Yang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Huaxin Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| |
Collapse
|
33
|
Liu T, Liu Y, Fu G, Chen J, Lv T, Su D, Wang Y, Hu X, Su X, Harris AJ. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153630. [PMID: 35193087 DOI: 10.1016/j.jplph.2022.153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Psammochloa villosa is a perennial herbaceous plant that is dominant within arid regions of the Inner Mongolian Plateau and the Qinghai-Tibet Plateau in China, where it is an endemic species and exhibits strong drought tolerance and wind resistance. To study drought tolerance in P. villosa and determine its molecular basis, we simulated high and moderate drought stress in a controlled environment and then analyzed transcriptome sequences by combining long-read sequences from a representative, wild-grown individual with short reads from the treatment groups. We obtained 184,076 high-quality isoforms as a reference and 168,650 genes (91.6%), which we were able to annotate according to public databases. Ultimately, we obtained 119,005 unigenes representing the transcriptome of P. villosa under drought stress and, among these, we identified 3089 differentially expressed genes and 1484 transcription factors. Physiologically, P. villosa that was exposed to high and moderate drought stress had reduced germination rates and shorter buds but generated more chlorophyll, which is atypical under drought stress and possibly reflects an adaptation of these plants to their arid environment. We inferred that significantly upregulated genes were annotated as 'Chlorophyll a-b binding protein' and 'Light-harvesting chlorophyll-protein' among drought and control groups. Broadly, our analyses revealed that drought stress triggered many genome-level responses, especially related to mitigation of radical oxygen species (ROS), which increase in concentration under drought stress. In particular, in the high drought stress group compared with the control, GO enrichment analysis revealed a significant enrichment of upregulated genes (n = 10) involved in mitigation of oxidative stress. Similarly, using KEGG we found significant enrichment of genes in the phenylpropanoid biosynthesis pathway (11 genes), which yields phenols that scavenge ROS. We also inferred that many genes involved in metabolism of arginine and proline, which may serve as both scavengers of ROS and osmoprotectants that interact with stress response genes based on our protein-protein interaction network analysis. We verified the relative expression levels of eight genes associated with mitigation of ROS, DNA repair, and transmembrane transporter activity using qRT-PCR, and the results were consistent with our inferences from transcriptomes. This study provides insights into the genomic and physiological basis of drought tolerance in P. villosa and represents a resource for development of the species as a forage crop via molecular breeding within arid lands.
Collapse
Affiliation(s)
- Tao Liu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Jinyuan Chen
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Ting Lv
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Dandan Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yanan Wang
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xiayu Hu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Academy of Plateau Science and Sustainability, Xueyuan Road, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, Qinghai Normal University, No. 38 Wusixi Road, Xining, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
34
|
Current Updates on Expanded Carrier Screening: New Insights in the Omics Era. Medicina (B Aires) 2022; 58:medicina58030455. [PMID: 35334631 PMCID: PMC8951681 DOI: 10.3390/medicina58030455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic carrier screening has been successfully used over the last decades to identify individuals at risk of transmitting specific DNA variants to their newborns, thus having an affected child. Traditional testing has been offered based on familial and/or ethnic backgrounds. The development of high-throughput technologies, such as next-generations sequencing, able to allow the study of large genomic regions in a time and cost-affordable way, has moved carrier screening toward a more comprehensive and extensive approach, i.e., expanded carrier screening (ECS). ECS simultaneously analyses several disease-related genes and better estimates individuals’ carrier status. Indeed, it is not influenced by ethnicity and is not limited to a subset of mutations that may arise from poor information in some populations. Moreover, if couples carry out ECS before conceiving a baby, it allows them to obtain a complete estimation of their genetic risk and the possibility to make an informed decision regarding their reproductive life. Despite these advantages, some weakness still exists regarding, for example, the number of genes and the kind of diseases to be analyzed and the interpretation and communication of the obtained results. Once these points are fixed, it is expectable that ECS will become an ever more frequent practice in clinical settings.
Collapse
|
35
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
36
|
L'Honneur AS, Pipoli Da Fonseca J, Cokelaer T, Rozenberg F. JC Polyomavirus whole genome sequencing at the single molecule level reveals emerging neurotropic populations in Progressive Multifocal Leucoencephalopathy. J Infect Dis 2022; 226:1151-1161. [PMID: 34979561 DOI: 10.1093/infdis/jiab639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND JC polyomavirus (JCV) mostly causes asymptomatic persistent renal infections but may give rise in immunosuppressed patients to neurotropic variants which replicate in the brain causing progressive multifocal leukoencephalopathy (PML). Rearrangements in the JCV genome regulator non-coding control region (NCCR) and missense mutations in the viral capsid VP1 gene differentiate neurotropic variants from virus excreted in urine. METHODS To investigate intra-host emergence of JCV neurotropic populations in PML, we deep sequenced JCV whole genome recovered from cerebrospinal fluid (CSF) and urine samples from 32 HIV- and non HIV-infected PML patients at the single-molecule level. RESULTS JCV strains distributed among 6 out of 7 known genotypes. Common patterns of NCCR rearrangements included an initial deletion mostly located in a short 10-nucleotide sequence, followed by duplications/insertions. Multiple NCCR variants present in individual CSF samples shared at least one rearrangement suggesting they stemmed from a unique viral population. NCCR variants independently acquired single or double PML-specific adaptive VP1 mutations. NCCR variants recovered from urine and CSF displayed opposite deletion or duplication patterns in binding sites for transcription factors. DISCUSSION Long read deep sequencing shed light on emergence of neurotropic JCV populations in PML.
Collapse
Affiliation(s)
- Anne-Sophie L'Honneur
- Université de Paris , INSERM Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie , Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologique (C2RT), Institut Pasteur, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologique (C2RT), Institut Pasteur, Paris, France.,Hub de Bioinformatique et de Biostatistique, Département Biologie Computationnelle, Institut Pasteur Paris, France
| | - Flore Rozenberg
- Université de Paris , INSERM Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie , Paris, France
| |
Collapse
|
37
|
Ayala-Usma DA, Cárdenas M, Guyot R, Mares MCD, Bernal A, Muñoz AR, Restrepo S. A whole genome duplication drives the genome evolution of Phytophthora betacei, a closely related species to Phytophthora infestans. BMC Genomics 2021; 22:795. [PMID: 34740326 PMCID: PMC8571832 DOI: 10.1186/s12864-021-08079-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. RESULTS Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. CONCLUSIONS This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.
Collapse
Affiliation(s)
- David A Ayala-Usma
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Martha Cárdenas
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, CIRAD, Université de Montpellier, 34394, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Maryam Chaib De Mares
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes (LIMMA), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes Muñoz
- Research Group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, MO, 63108, St Louis, USA.
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia.
| |
Collapse
|
38
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
39
|
Lyu JI, Ramekar R, Kim JM, Hung NN, Seo JS, Kim JB, Choi IY, Park KC, Kwon SJ. Unraveling the complexity of faba bean (Vicia faba L.) transcriptome to reveal cold-stress-responsive genes using long-read isoform sequencing technology. Sci Rep 2021; 11:21094. [PMID: 34702863 PMCID: PMC8548339 DOI: 10.1038/s41598-021-00506-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Faba bean (Vicia faba L.), a globally important grain legume providing a stable source of dietary protein, was one of the earliest plant cytogenetic models. However, the lack of draft genome annotations and unclear structural information on mRNA transcripts have impeded its genetic improvement. To address this, we sequenced faba bean leaf transcriptome using the PacBio single-molecule long-read isoform sequencing platform. We identified 28,569 nonredundant unigenes, ranging from 108 to 9669 bp, with a total length of 94.5 Mb. Many unigenes (3597, 12.5%) had 2-20 isoforms, indicating a highly complex transcriptome. Approximately 96.5% of the unigenes matched sequences in public databases. The predicted proteins and transcription factors included NB-ARC, Myb_domain, C3H, bHLH, and heat shock proteins, implying that this genome has an abundance of stress resistance genes. To validate our results, we selected WCOR413-15785, DHN2-12403, DHN2-14197, DHN2-14797, COR15-14478, and HVA22-15 unigenes from the ICE-CBF-COR pathway to analyze their expression patterns in cold-treated samples via qRT-PCR. The expression of dehydrin-related genes was induced by cold stress. The assembled data provide the first insights into the deep sequencing of full-length RNA from faba bean at the single-molecule level. This study provides an important foundation to improve gene modeling and protein prediction.
Collapse
Affiliation(s)
- Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea.,Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, Chungnam, 32439, Korea
| | - Rahul Ramekar
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, Korea
| | - Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea
| | - Nguyen Ngoc Hung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, Korea.
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup, 56212, Korea.
| |
Collapse
|
40
|
Bali S, Hu S, Vining K, Brown C, Mojtahedi H, Zhang L, Gleason C, Sathuvalli V. Nematode Genome Announcement: Draft Genome of Meloidogyne chitwoodi, an Economically Important Pest of Potato in the Pacific Northwest. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:981-986. [PMID: 33779267 DOI: 10.1094/mpmi-12-20-0337-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Meloidogyne chitwoodi is one of the most devastating pests of potato in the U.S. Pacific Northwest (PNW). Nematode-infected tubers develop external as well as internal defects, making the potato tubers unmarketable, and resulting in economic losses. Draft genome assemblies of three M. chitwoodi genotypes-race 1, race 2 and race 1 pathotype Roza-were generated using Illumina and PacBio Sequel RS II sequencing. The final assemblies consist of 30, 39, and 38 polished contigs for race 1, race 2 and race 1 pathotype Roza, respectively, with average N50 of 2.37 Mb and average assembled genome size of approximately 47.41 Mb. On average, 10,508 genes were annotated for each genome. Benchmarking universal single-copy ortholog (BUSCO) analysis indicated that 69.80% of the BUSCOs were complete whereas 68.80, 0.93, and 12.67% were single copy, duplicated, and fragmented, respectively. These highly contiguous genomes will enrich resources to study potato-nematode interactions and enhance breeding efforts to develop nematode-resistant potato varieties for the PNW.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sapinder Bali
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, OR 19838
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Shengwei Hu
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, OR 19838
| | - Kelly Vining
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - Chuck Brown
- Retired from United States Department of Agriculture, Prosser, WA 99350
| | - Hassan Mojtahedi
- Retired from United States Department of Agriculture, Prosser, WA 99350
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, OR 19838
| |
Collapse
|
41
|
SMRT sequencing of full-length transcriptome of birch-leaf pear (Pyrus betulifolia Bunge) under drought stress. J Genet 2021. [DOI: 10.1007/s12041-021-01272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Yang L, Huang W, Yang C, Ma T, Hou Q, Sun Z, Zhang H. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
43
|
Zhang C, Oguz C, Huse S, Xia L, Wu J, Peng YC, Smith M, Chen J, Long CA, Lack J, Su XZ. Genome sequence, transcriptome, and annotation of rodent malaria parasite Plasmodium yoelii nigeriensis N67. BMC Genomics 2021; 22:303. [PMID: 33902452 PMCID: PMC8072299 DOI: 10.1186/s12864-021-07555-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07555-9.
Collapse
Affiliation(s)
- Cui Zhang
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Sue Huse
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Lu Xia
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA.,State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Yu-Chih Peng
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Margaret Smith
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Jack Chen
- The NCI sequencing facility, 8560 Progress Drive, Room 3007, Frederick, MD, 21701, USA
| | - Carole A Long
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA.
| |
Collapse
|
44
|
Becker JP, Helm D, Rettel M, Stein F, Hernandez-Sanchez A, Urban K, Gebert J, Kloor M, Neu-Yilik G, von Knebel Doeberitz M, Hentze MW, Kulozik AE. NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. iScience 2021; 24:102389. [PMID: 33981976 PMCID: PMC8082087 DOI: 10.1016/j.isci.2021.102389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Jonas P. Becker
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Dominic Helm
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Urban
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Gebert
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Kloor
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Oberle A, Urban L, Falch-Leis S, Ennemoser C, Nagai Y, Ashikawa K, Ulm PA, Hengstschläger M, Feichtinger M. 16S rRNA long-read nanopore sequencing is feasible and reliable for endometrial microbiome analysis. Reprod Biomed Online 2021; 42:1097-1107. [PMID: 33849786 DOI: 10.1016/j.rbmo.2021.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
RESEARCH QUESTION Full-length 16S rRNA gene sequencing using nanopore technology is a fast alternative to conventional short-read 16S rRNA gene sequencing with low initial investment costs that has been used for various microbiome studies but has not yet been investigated as an alternative approach for endometrial microbiome analysis. Is in-situ 16S rRNA gene long-read sequencing using portable nanopore sequencing technology feasible and reliable for endometrial microbiome analysis? DESIGN A prospective experimental study based on 33 patients seeking infertility treatment between January and October 2019. A 16S rRNA gene long-read nanopore sequencing protocol for analysing endometrial microbiome samples was established, including negative controls for contamination evaluation and positive controls for bias evaluation. Contamination caused by kit and exterior sources was identified and excluded from the analysis. Endometrial samples from 33 infertile patients were sequenced using the optimized long-read nanopore sequencing protocol and compared with conventional short-read sequencing carried out by external laboratories. RESULTS Of the 33 endometrial patient samples, 23 successfully amplified (69.7%) and their microbiome was assessed using nanopore sequencing. Of those 23 samples, 14 (60.9%) were Lactobacillus-dominated (>80% of reads mapping to Lactobacillus), with 10 samples resulting in more than 90% Lactobacillus reads. Our long-read nanopore sequencing revealed results similar to two conventional short-read sequencing approaches and to long-read sequencing validation carried out in external laboratories. CONCLUSION In this pilot study, 16S rRNA gene long-read nanopore sequencing was established to analyse the endometrial microbiome in situ that could be widely applied owing to its cost efficiency and portable character.
Collapse
Affiliation(s)
- Anna Oberle
- Wunschbaby Institut Feichtinger, Lainzerstrasse 6, Vienna 1130, Austria
| | - Lara Urban
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Stefanie Falch-Leis
- Tyrolpath, Pathologielabor Dr. Obrist Dr. Brunhuber, Hauptplatz 4, Zams 6511, Austria
| | - Chiara Ennemoser
- Tyrolpath, Pathologielabor Dr. Obrist Dr. Brunhuber, Hauptplatz 4, Zams 6511, Austria
| | - Yoko Nagai
- Varinos, Inc., Dai 2 Gotanda Fujikoshi Bldg., 6F 5-23-1 Higashigotanda, Shinagawa-ku Tokyo, Japan
| | - Kyota Ashikawa
- Varinos, Inc., Dai 2 Gotanda Fujikoshi Bldg., 6F 5-23-1 Higashigotanda, Shinagawa-ku Tokyo, Japan
| | - Patricia A Ulm
- Wunschbaby Institut Feichtinger, Lainzerstrasse 6, Vienna 1130, Austria
| | | | - Michael Feichtinger
- Wunschbaby Institut Feichtinger, Lainzerstrasse 6, Vienna 1130, Austria; Department of Oncology - Pathology, Karolinska Institutet, Karolinska vägen, A2:07171 64 Solna Stockholm, Sweden.
| |
Collapse
|
46
|
He X, Lu T, Zhou X. Whole genome sequencing and comparative genomics analysis of Pectobacterium carotovorum identifies key pathogenic genes. Mol Phylogenet Evol 2021; 162:107114. [PMID: 33744402 DOI: 10.1016/j.ympev.2021.107114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
Based on Single moleculereal time(SMRT)sequencing technology, the high-quality whole genome sequence of Pectobacterium carotovorum (PC1) was obtained by the PacBio RS II sequencer. The genome is a single circular chromosome of 5.3 Mb in size, containing three kinds of m6A methylation modification by SMRT Portal analysis. Genome annotation showed that 575 virulence factor genes, 304 drug resistance genes, 774 pathogen genes, 7 secretory systems and 22 pairs of two-component regulatory system could be relevant to bacterial pathogenicity. In addition, the average nucleotide identities (ANI) analysisshowed that the PC1 exhibited the highest homology with the Pectobacteriumcarotovorumsubsp.carotovorumstrain BP201601.1 (NZ_CP034236). There are 28 unique gene families to PC1 using cluster analysis of gene families. According to the analysis of key pathogenic genes, we have obtained three kinds of highly conserved genes related to cell wall degrading enzymes, including 19 pectinase genes, 25 cellulase genes and 22 protease genes. Our studies have provided a theoretical basis for investigation of bacterial soft rot and biological specific bactercides of PC1.
Collapse
Affiliation(s)
- Xiaoliang He
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Tianhua Lu
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China
| | - Xiaohui Zhou
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhang, Hebei, China.
| |
Collapse
|
47
|
Kumar A, Adhikari S, Kankainen M, Heckman CA. Comparison of Structural and Short Variants Detected by Linked-Read and Whole-Exome Sequencing in Multiple Myeloma. Cancers (Basel) 2021; 13:1212. [PMID: 33802025 PMCID: PMC7999337 DOI: 10.3390/cancers13061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Linked-read sequencing was developed to aid the detection of large structural variants (SVs) from short-read sequencing efforts. We performed a systematic evaluation to determine if linked-read exome sequencing provides more comprehensive and clinically relevant information than whole-exome sequencing (WES) when applied to the same set of multiple myeloma patient samples. We report that linked-read sequencing detected a higher number of SVs (n = 18,455) than WES (n = 4065). However, linked-read predictions were dominated by inversions (92.4%), leading to poor detection of other types of SVs. In contrast, WES detected 56.3% deletions, 32.6% insertions, 6.7% translocations, 3.3% duplications and 1.2% inversions. Surprisingly, the quantitative performance assessment suggested a higher performance for WES (AUC = 0.791) compared to linked-read sequencing (AUC = 0.766) for detecting clinically validated cytogenetic alterations. We also found that linked-read sequencing detected more short variants (n = 704) compared to WES (n = 109). WES detected somatic mutations in all MM-related genes while linked-read sequencing failed to detect certain mutations. The comparison of somatic mutations detected using linked-read, WES and RNA-seq revealed that WES and RNA-seq detected more mutations than linked-read sequencing. These data indicate that WES outperforms and is more efficient than linked-read sequencing for detecting clinically relevant SVs and MM-specific short variants.
Collapse
Affiliation(s)
- Ashwini Kumar
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland; (A.K.); (S.A.)
- iCAN Digital Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Sadiksha Adhikari
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland; (A.K.); (S.A.)
- iCAN Digital Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Matti Kankainen
- iCAN Digital Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00029 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, 00290 Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland; (A.K.); (S.A.)
- iCAN Digital Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
48
|
Blondal T, Gamba C, Møller Jagd L, Su L, Demirov D, Guo S, Johnston CM, Riising EM, Wu X, Mikkelsen MJ, Szabova L, Mouritzen P. Verification of CRISPR editing and finding transgenic inserts by Xdrop indirect sequence capture followed by short- and long-read sequencing. Methods 2021; 191:68-77. [PMID: 33582298 DOI: 10.1016/j.ymeth.2021.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023] Open
Abstract
Validation of CRISPR-Cas9 editing typically explores the immediate vicinity of the gene editing site and distal off-target sequences, which has led to the conclusion that CRISPR-Cas9 editing is very specific. However, an increasing number of studies suggest that on-target unintended editing events like deletions and insertions are relatively frequent but unfortunately often missed in the validation of CRISPR-Cas9 editing. The deletions may be several kilobases-long and only affect one allele. The gold standard in molecular validation of gene editing is direct sequencing of relatively short PCR amplicons. This approach allows the detection of small editing events but fails in detecting large rearrangements, in particular when only one allele is affected. Detection of large rearrangements requires that an extended region is analyzed and the characterization of events may benefit from long-read sequencing. Here we implemented Xdrop™, a new microfluidic technology that allows targeted enrichment of long regions (~100 kb) using just a single standard PCR primer set. Sequencing of the enriched CRISPR-Cas9 gene-edited region in four cell lines on long- and short-read sequencing platforms unravelled unknown and unintended genome editing events. The analysis revealed accidental kilobases-large insertions in three of the cell lines, which remained undetected using standard procedures. We also applied the targeted enrichment approach to identify the integration site of a transgene in a mouse line. The results demonstrate the potential of this technology in gene editing validation as well as in more classic transgenics.
Collapse
Affiliation(s)
| | | | | | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dimiter Demirov
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Ludmila Szabova
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, MD, USA
| | | |
Collapse
|
49
|
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol 2021; 9:632059. [PMID: 33644024 PMCID: PMC7902726 DOI: 10.3389/fbioe.2021.632059] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Global environmental contamination with a complex mixture of xenobiotics has become a major environmental issue worldwide. Many xenobiotic compounds severely impact the environment due to their high toxicity, prolonged persistence, and limited biodegradability. Microbial-assisted degradation of xenobiotic compounds is considered to be the most effective and beneficial approach. Microorganisms have remarkable catabolic potential, with genes, enzymes, and degradation pathways implicated in the process of biodegradation. A number of microbes, including Alcaligenes, Cellulosimicrobium, Microbacterium, Micrococcus, Methanospirillum, Aeromonas, Sphingobium, Flavobacterium, Rhodococcus, Aspergillus, Penecillium, Trichoderma, Streptomyces, Rhodotorula, Candida, and Aureobasidium, have been isolated and characterized, and have shown exceptional biodegradation potential for a variety of xenobiotic contaminants from soil/water environments. Microorganisms potentially utilize xenobiotic contaminants as carbon or nitrogen sources to sustain their growth and metabolic activities. Diverse microbial populations survive in harsh contaminated environments, exhibiting a significant biodegradation potential to degrade and transform pollutants. However, the study of such microbial populations requires a more advanced and multifaceted approach. Currently, multiple advanced approaches, including metagenomics, proteomics, transcriptomics, and metabolomics, are successfully employed for the characterization of pollutant-degrading microorganisms, their metabolic machinery, novel proteins, and catabolic genes involved in the degradation process. These technologies are highly sophisticated, and efficient for obtaining information about the genetic diversity and community structures of microorganisms. Advanced molecular technologies used for the characterization of complex microbial communities give an in-depth understanding of their structural and functional aspects, and help to resolve issues related to the biodegradation potential of microorganisms. This review article discusses the biodegradation potential of microorganisms and provides insights into recent advances and omics approaches employed for the specific characterization of xenobiotic-degrading microorganisms from contaminated environments.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
50
|
Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform 2021; 22:178-193. [PMID: 31848574 PMCID: PMC7820839 DOI: 10.1093/bib/bbz155] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly, binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).
Collapse
Affiliation(s)
- Richa Bharti
- Weihenstephan-Triesdorf University of Applied Sciences and Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
| | - Dominik G Grimm
- Weihenstephan-Triesdorf University of Applied Sciences and Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
| |
Collapse
|