1
|
Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell 2023; 36:908-922. [PMID: 36847920 PMCID: PMC9969954 DOI: 10.1007/s13577-023-00867-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection in the young and healthy usually results in an asymptomatic or mild viral syndrome, possibly through an erythropoietin (EPO)-dependent, protective evolutionary landscape. In the old and in the presence of co-morbidities, however, a potentially lethal coronavirus disease 2019 (COVID-19) cytokine storm, through unrestrained renin-angiotensin aldosterone system (RAAS) hyperactivity, has been described. Multifunctional microRNA-155 (miR-155) elevation in malaria, dengue virus (DENV), the thalassemias, and SARS-CoV-1/2, plays critical antiviral and cardiovascular roles through its targeted translational repression of over 140 genes. In the present review, we propose a plausible miR-155-dependent mechanism whereby the translational repression of AGRT1, Arginase-2 and Ets-1, reshapes RAAS towards Angiotensin II (Ang II) type 2 (AT2R)-mediated balanced, tolerable, and SARS-CoV-2-protective cardiovascular phenotypes. In addition, it enhances EPO secretion and endothelial nitric oxide synthase activation and substrate availability, and negates proinflammatory Ang II effects. Disrupted miR-155 repression of AT1R + 1166C-allele, significantly associated with adverse cardiovascular and COVID-19 outcomes, manifests its decisive role in RAAS modulation. BACH1 and SOCS1 repression creates an anti-inflammatory and cytoprotective milieu, robustly inducing antiviral interferons. MiR-155 dysregulation in the elderly, and in comorbidities, allows unimpeded RAAS hyperactivity to progress towards a particularly aggressive COVID-19 course. Elevated miR-155 in thalassemia plausibly engenders a favorable cardiovascular profile and protection against malaria, DENV, and SARS-CoV-2. MiR-155 modulating pharmaceutical approaches could offer novel therapeutic options in COVID-19.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Bangkok, 10310 Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
2
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
3
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
4
|
De A, Tiwari A, Pande V, Sinha A. Evolutionary trilogy of malaria, angiotensin II and hypertension: deeper insights and the way forward. J Hum Hypertens 2022; 36:344-351. [PMID: 34480100 DOI: 10.1038/s41371-021-00599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Despite clinical and pathological distinctions between malaria and hypertension, accumulated epidemiological and evolutionary evidence indicate the need of deeper understanding how severe malaria contributes to elevated hypertension risk. Malaria is said to exert strong selection pressure on the host genome, thus selecting certain genetic polymorphisms. Few candidate polymorphisms have also been reported in the RAS (ACE I/D and ACE2 rs2106809) that are shown to increase angiotensin II (ang II) levels in a combinatorial manner. The raised ang II has some antiplasmodial actions in addition to protecting against severe/cerebral malaria. It is hypothesized that RAS polymorphisms may have been naturally selected over time in the malaria-endemic areas in such a way that hypertension, or the risk thereof, is higher in such areas as compared to non-malaria endemic areas. The purpose of this review is to gain deeper insights into various sparse evidence linking malaria and hypertension and suggesting a way forward.
Collapse
Affiliation(s)
- Auley De
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Aparna Tiwari
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.,Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
5
|
Tiwari A, De A, Pande V, Sinha A. Interlinking Antecedent Malaria and Hypertension Through Angiotensin II in India. Front Cardiovasc Med 2021; 8:729525. [PMID: 34708085 PMCID: PMC8542721 DOI: 10.3389/fcvm.2021.729525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aparna Tiwari
- Parasite Host Biology, Indian Council of Medical Research - National Institute of Malaria Research, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Auley De
- Parasite Host Biology, Indian Council of Medical Research - National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research - National Institute of Malaria Research, New Delhi, India
| |
Collapse
|