1
|
Lei H, Huang L, Wan H, Chen M. Overexpression of LMOD1 induces oxidative stress and enhances cell apoptosis of melanoma through the RIG-I like receptor pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167762. [PMID: 40068386 DOI: 10.1016/j.bbadis.2025.167762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Oxidative stress is crucial in the development of cutaneous melanoma, but its role in melanoma is controversial. We aimed to identify melanoma-associated targets and understand the underlying mechanism. METHODS Differential expressed genes (DEGs) were discovered between control and melanoma samples, and a protein-protein interaction (PPI) network was constructed to find key genes. The prediction accuracy of LMOD1 was assessed by receiver operating characteristic (ROC) curves, and pan-cancer analysis was also performed for LMOD1 expression and immune characteristics. The downstream pathway of LMOD1 was found via KEGG analysis. The effects of LMOD1 on oxidative stress, apoptosis, CD4 + T cells and the downstream pathway were evaluated in melanoma cells and mice. RESULTS We identified ACTG2, CNN1, LMOD1, MYH11, MYL9, MYLK, TAGLN, TPM1 and TPM2 as melanoma-related DEGs, which could separate control and melanoma samples. The area under curve (AUC) of LMOD1 was > 0.89, indicating high prediction accuracy. LMOD1 expression was decreased in melanoma, and LMOD1 notably correlated with B cells, CD4 T cells, neutrophils, macrophages and dendritic cells (DCs). Overexpression of LMOD1 promoted apoptosis, enhanced migration and invasion, and activated oxidative stress in melanoma cells. LMOD1 promoted apoptosis via activating oxidative stress. The RIG-I-like receptor signaling (RLR) was a downstream pathway of LMOD1. Overexpression of LMOD1 activated oxidative stress, increased apoptosis and CD4 + T cells, and elevated RIG-I and MDA5, while Cyclo (Phe-Pro) (cFP) reversed the results. CONCLUSION LMOD1 triggers oxidative stress-mediated apoptosis in melanoma via activating the RLR pathway, which provides promising targets and regulatory pathway for melanoma.
Collapse
Affiliation(s)
- Hua Lei
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu City 610041, Sichuan Province, China
| | - Linxue Huang
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu City 610041, Sichuan Province, China
| | - Huiying Wan
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu City 610041, Sichuan Province, China.
| | - Mingyi Chen
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu City 610041, Sichuan Province, China.
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
3
|
Sharma M, Dey U, Das AS, Olymon K, Kumar A, Mukhopadhyay R. Anti-tumor potential of high salt in breast Cancer cell lines. Mol Biol Rep 2024; 51:1002. [PMID: 39305332 DOI: 10.1007/s11033-024-09925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/09/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Recent 23Na-MRI reports show higher salt deposition in malignant breast tissue than in surrounding normal tissue. The effect of high salt on cancer progression remains controversial. Here, we investigated the direct effect of high salt on breast cancer progression in vitro. METHODS Here, the impact of high salt on apoptosis, proliferation, cell cycle, adhesion, and migration of MDA-MB-231 and MCF-7 cells was studied using MTT, scratch, and clonogenic assays, as well as RT-PCR and flow cytometry. Gene expression was analyzed using Real-Time PCR and western blotting. The effect of high salt on global transcriptomics changes in MDA MB-231 cells was studied using RNA-sequencing analysis. RESULTS Flow cytometry with Annexin V and CFSE revealed that high salt-induced dose-dependent apoptosis and inhibited proliferation. High salt-induced cell cycle arrest at the G1/S phase of the cell cycle. p-MDM2 is known to suppress p53, which plays a crucial role in regulating apoptosis and cell cycle arrest under cellular stress conditions. High salt treatment led to decreased p-MDM2 and increased p53 expression, suggesting that high salt induces apoptosis through p53 stabilization. decreased p-MDM2 and increased p53 expression. High salt also reduced migration and adhesion of cells in a dose-dependent manner suggesting its inhibitory effect on metastatic properties as evident from wound healing assay. RNA sequencing analysis revealed overexpression of tumor suppressor genes and genes associated with anti-tumor activity (PCDHGA11, EIF3CL, RAVER1, TNFSF15, RANBP3L) and under-expression of genes involved in cancer-promoting activity (MT1X, CLDN14, CSF-2). CONCLUSION Our results unequivocally demonstrate the anti-tumor efficacy of high salt against breast cancer cells, suggesting its potential as a therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, USA
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| |
Collapse
|
4
|
Zhang ZY, Yang ZH, Wang S, Feng SL, Wang XL, Mao JY. Regulation of optimized new Shengmai powder on cardiomyocyte apoptosis and ferroptosis in ischemic heart failure rats: The mediating role of phosphatidylinositol-3-kinase/protein kinase B/tumor protein 53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118264. [PMID: 38692417 DOI: 10.1016/j.jep.2024.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zhi-Hua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shao-Ling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Xian-Liang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jing-Yuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
5
|
Sadeq S, Chitcharoen S, Al-Hashimi S, Rattanaburi S, Casement J, Werner A. Significant Variations in Double-Stranded RNA Levels in Cultured Skin Cells. Cells 2024; 13:226. [PMID: 38334619 PMCID: PMC10854852 DOI: 10.3390/cells13030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.
Collapse
Affiliation(s)
- Shaymaa Sadeq
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- Fallujah College of Medicine, University of Fallujah, Al-Fallujah 31002, Iraq
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Surar Al-Hashimi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- College of Medicine, University of Misan, Al-Sader Teaching Hospital, Amarah 62001, Iraq
| | - Somruthai Rattanaburi
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John Casement
- Bioinformatics Support Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andreas Werner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
| |
Collapse
|
6
|
Wang M, Zhang Y, Gao L, Zhang H, Yang Z, Liu J, Shan W, Zeng L, Zhang R, Li Y, Liu J. RIG-I promotes cell proliferation in esophageal squamous cell carcinoma by facilitating p21 degradation. Med Oncol 2023; 40:288. [PMID: 37656315 DOI: 10.1007/s12032-023-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is considered a key sensor for host recognition of RNA virus infections. Recent studies have shown that RIG-I also regulates carcinogenesis. However, the role of RIG-I in esophageal squamous cell carcinoma (ESCC) remains unclear. We investigated the RIG-I expression in ESCC cells using a public database, immunohistochemistry, and Western blotting. We evaluated the proliferative activity of ESCC cells using CCK-8, colony formation, and EdU staining assays. Further, we determined the ESCC cell-cycle changes using flow cytometry and the ubiquitination of p21 in the cells using cycloheximide chase and ubiquitination assays. Finally, we verified the in vivo effects of RIG-I on ESCC cells by constructing xenograft models. RIG-I was highly expressed in ESCC cells and significantly promoted their proliferation and cell-cycle. Moreover, RIG-I knockdown inhibited xenograft growth in nude mice. Furthermore, RIG-I accelerated the cell-cycle by promoting the ubiquitination and degradation of p21. Overall, this study revealed that the increased expression of RIG-I due to ESCC accelerated the progression of esophageal cancer by promoting the ubiquitination and degradation of p21, which is related to the prognosis of ESCC. Thus, RIG-I may be a novel therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hailin Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jialong Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Wenqing Shan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Ranran Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangyang, Hubei, 441021, China.
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China.
| |
Collapse
|
7
|
Sorbi C, Belluti S, Atene CG, Marocchi F, Linciano P, Roy N, Paradiso E, Casarini L, Ronsisvalle S, Zanocco-Marani T, Brasili L, Lanfrancone L, Imbriano C, Di Rocco G, Franchini S. BS148 Reduces the Aggressiveness of Metastatic Melanoma via Sigma-2 Receptor Targeting. Int J Mol Sci 2023; 24:ijms24119684. [PMID: 37298633 DOI: 10.3390/ijms24119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.
Collapse
Affiliation(s)
- Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale di Baggiovara, 41126 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Livio Brasili
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
8
|
Sun T, Tong W, Pu J, Yu Z, Kang Z. SH3BP1 Regulates Melanoma Progression Through Race1/Wace2 Signaling Pathway. Clin Med Insights Oncol 2023; 17:11795549231168075. [PMID: 37114076 PMCID: PMC10126683 DOI: 10.1177/11795549231168075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Background SH3-domain binding protein-1 (SH3BP1), which specifically inactivates Rac1 and its target protein Wave2, has been shown to be an important regulator of cancer metastasis. However, the effects of SH3BP1 in melanoma progression remain unclear. The current study aimed to explore the function of SH3BP1 in melanoma and its possible molecular mechanism. Methods TCGA database was used to analyze the expression of SH3BP1 in melanoma. Then, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression of SH3BP1 in melanoma tissues and cells. Next, genes related to SH3BP1 were analyzed by LinkedOmics database, and protein interactions were analyzed by STRING database. These genes were further subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In addition, the signaling pathway of SH3BP1 action was screened by bioinformatics analysis. Finally, the function of SH3BP1 and its mediated signaling pathway in melanoma progression were investigated in vitro and in vivo. Results SH3BP1 was significantly upregulated in melanoma tissues and cells. The pathways regulated by SH3BP1 are closely related to the occurrence and development of tumors. And we found that overexpression of SH3BP1 promoted the proliferation, migration, and invasion of melanoma cells by increasing Rac1 activity and Wave2 protein levels in vitro. Similarly, overexpression of SH3BP1 facilitated melanoma progression by upregulating Wave2 protein expression in vivo. Conclusion In summary, this study revealed for the first time that SH3BP1 promoted melanoma progression through Rac1/Wave2 signaling pathway, providing a new therapeutic target for melanoma.
Collapse
Affiliation(s)
- Ting Sun
- Department of Dermatology, Middle
Military Command General Hospital of PLA, Wuhan, China
| | - Wenxian Tong
- Department of Oncology, The Fifth
Hospital of Wuhan, Wuhan, China
| | - Jie Pu
- Department of Neurology, Renmin
Hospital of Wuhan University, Wuhan, China
| | - Zhiguo Yu
- Department of Emergency, Central
Theater General Hospital, Wuhan, China
| | - Zhengchun Kang
- Department of Colorectal Surgery,
Changhai Hospital, Naval Medical University, Shanghai, China
- Zhengchun Kang, Department of Colorectal
Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu
District, Shanghai 200433, China.
| |
Collapse
|