1
|
Assi T, Moussa T, Ngo C, Faron M, Verret B, Lévy A, Honoré C, Hénon C, Péchoux CL, Bahleda R, Vibert J, Cesne AL. Therapeutic advances in Tenosynovial giant cell Tumor: Targeting the CSF1/CSF1R axis. Cancer Treat Rev 2025; 134:102904. [PMID: 40020639 DOI: 10.1016/j.ctrv.2025.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Tenosynovial giant cell tumor is a non-malignant primary locally aggressive articular disease that affects the synovium of joints, tendon sheaths, and bursae. It is characterized by a translocation t (1;2), leading to the overexpression of CSF1 in the tumor microenvironment. CSF1 induces the recruitment of non-malignant cells, mainly macrophages, followed by the differentiation and polarization of these cells into the M2 phenotype. Surgery, particularly total synovectomy, remains the cornerstone of TGCT management. However, recurrence rates vary, reaching 40 to 60% in diffuse disease, often resulting in progressive joint dysfunction, pain, and potential need for joint replacement or limb amputation. Systemic therapy is recommended in recurrent TGCT in patients not amenable to additional surgery. Targeting the CSF1/CSF1R axis has successfully improved tumor responses and enhanced symptomatic function. In this review, we aim to explore contemporary paradigms in inoperable TGCT patients, with a focus on the physiopathology, clinical efficacy, and safety of CSF1 or CSF1R inhibitors.
Collapse
Affiliation(s)
- Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Radiology Department, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Tania Moussa
- Radiology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carine Ngo
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Matthieu Faron
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Verret
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antonin Lévy
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Honoré
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Clémence Hénon
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | - Julien Vibert
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
2
|
Dania V, Stavropoulos NA, Gavriil P, Trikoupis I, Koulouvaris P, Savvidou OD, Mavrogenis AF, Papagelopoulos PJ. Treatment Modalities for Refractory-Recurrent Tenosynovial Giant Cell Tumor (TGCT): An Update. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1675. [PMID: 39459462 PMCID: PMC11509811 DOI: 10.3390/medicina60101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Tenosynovial giant cell tumor (TGCT) is a rare, locally aggressive, benign neoplasm arising from the synovium of joints, tendon sheaths, and bursa. There are two main subtypes of TGCT: localized-type TGCT(L-TGCT) and diffuse-type TGCT (D-TGCT). While surgical excision is still considered the gold standard of treatment, the high recurrence rate, especially for D-TGCT, may suggest the need for other treatment modalities. Materials and Methods: This study reviews current literature on the current treatment modalities for refractory-relapsed TGCT disease. Results: The gold standard of treatment modality in TGCT remains surgical excision of the tumor nevertheless, the elevated recurrence rate and refractory disease, particularly in D-TGCT indicates and underscores the necessity for additional treatment alternatives. Conclusions: TGCT is a benign tumor with inflammatory features and a potential destructive and aggressive course that can lead to significant morbidity and functional impairment with a high impact on quality of life. Surgical resection remains the gold standard current treatment and the optimal surgical approach depends on the location and extent of the tumor. Systemic therapies have been recently used for relapsed mainly cases.
Collapse
Affiliation(s)
| | - Nikolaos A. Stavropoulos
- First Department of Orthopedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University General Hospital, 12462 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
3
|
Wang Q, Wang J, Xu K, Luo Z. Targeting the CSF1/CSF1R signaling pathway: an innovative strategy for ultrasound combined with macrophage exhaustion in pancreatic cancer therapy. Front Immunol 2024; 15:1481247. [PMID: 39416792 PMCID: PMC11479911 DOI: 10.3389/fimmu.2024.1481247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and lethal malignancy characterized by a complex tumor microenvironment (TME) and immunosuppressive features that limit the efficacy of existing treatments. This paper reviews the potential of combining ultrasound with macrophage exhaustion in the treatment of pancreatic cancer. Macrophages, particularly tumor-associated macrophages (TAMs), are crucial in pancreatic cancer progression and immune escape. Prolonged exposure to the immunosuppressive TME leads to macrophage exhaustion, reducing their anti-tumor ability and instead promoting tumor growth. The CSF1/CSF1R signaling pathway is key in macrophage recruitment and functional regulation, making it an effective target for combating macrophage exhaustion. Ultrasound technology not only plays a significant role in diagnosis and staging but also enhances therapeutic efficacy by guiding radiofrequency ablation (RFA) and percutaneous alcohol injection (PEI) in combination with immunomodulators. Additionally, ultrasound imaging can monitor the number and functional status of TAMs in real-time, providing a basis for optimizing treatment strategies. Future studies should further investigate the combined use of ultrasound and immunomodulators to refine treatment regimens, address challenges such as individual variability and long-term effects, and offer new hope for pancreatic cancer patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ultrasound, Xichong People’s Hospital, Nanchong, China
| | - Jianhong Wang
- Department of Internal Medicine, Guang’an Vocational & Technical College, Guang’an, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Huang CY, Zhao LP, Rao XN, Zheng RR, Liu ZS, Cai H, Zhang W, Chen AL, Xu L, Li S. Chlorin e6 and BLZ945 Based Self-Assembly for Photodynamic Immunotherapy Through Immunogenic Tumor Induction and Tumor-Associated Macrophage Depletion. Adv Healthc Mater 2024; 13:e2304576. [PMID: 38689517 DOI: 10.1002/adhm.202304576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Immunotherapeutic effect is restricted by the nonimmunogenic tumor phenotype and immunosuppression behaviors of tumor-associated macrophages (TAMs). In this work, a drug self-assembly (designated as CeBLZ) is fabricated based on chlorin e6 (Ce6) and BLZ945 to activate photodynamic immunotherapy through tumor immunogenic induction and tumor-associated macrophage depletion. It is found that Ce6 tends to assemble with BLZ945 without any drug excipients, which can enhance the cellular uptake, tumor penetration, and blood circulation behaviors. The robust photodynamic therapy effect of CeBLZ efficiently suppresses the primary tumor growth and also triggers immunogenic cell death to reverse the nonimmunogenic tumor phenotype. Moreover, CeBLZ can deplete TAMs in tumor tissues to reverse the immunosuppression microenvironment, activating abscopal effect for distant tumor inhibition. In vitro and in vivo results confirm the superior antitumor effect of CeBLZ with negligible side effect, which might promote the development of sophisticated drug combinations for systematic tumor management.
Collapse
Affiliation(s)
- Chu-Yu Huang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin-Ping Zhao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiao-Na Rao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Rong-Rong Zheng
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zhi-Shan Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Wei Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - A-Li Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
6
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
7
|
Cersosimo F, Lonardi S, Ulivieri C, Martini P, Morrione A, Vermi W, Giordano A, Giurisato E. CSF-1R in Cancer: More than a Myeloid Cell Receptor. Cancers (Basel) 2024; 16:282. [PMID: 38254773 PMCID: PMC10814415 DOI: 10.3390/cancers16020282] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Andrea Morrione
- Center for Biotechnology, Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (P.M.); (W.V.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|