1
|
Zeng Q, Xue L, Li W, Liang C, Zhou W, Xiong W, Dai X. Inhibition of 5-hydroxyindoleacetic acid to reduce neutrophil extracellular trap production improves lung condition in chronic obstructive pulmonary disease mice. Ann Med 2025; 57:2474734. [PMID: 40066951 PMCID: PMC11899248 DOI: 10.1080/07853890.2025.2474734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Neutrophil extracellular trap (NET) correlate with chronic obstructive pulmonary disease (COPD) severity. Platelets can promote NET generation. However, serotonin alone or serotonin-deficient platelets do not adequately promote NET production. The metabolism of serotonin to 5-hydroxyindoleacetic acid (5-HIAA) in platelets may be the key to this difference. OBJECTIVE The study aimed to determine whether 5-HIAA can influence NET production and thus play a role in COPD. METHODS After a 4-hour co-incubation with lipopolysaccharide (LPS) and 5-HIAA, NET and ROS levels in the culture medium were measured by ELISA, and NET production with aryl hydrocarbon receptor (AHR) expression in adherent cells were analyzed by immunofluorescence.A COPD model was established in C57BL/6 mice through smoke exposure combined with LPS tracheal administration, followed by selegiline or 5-HIAA treatment. Post-intervention, lung function tests and sample collection were performed. The levels of 5-HIAA, ROS, NET, IL-6, and AHR in the samples were quantified by ELISA, pathological changes were assessed by HE staining, and NET/AHR expression was detected by immunofluorescence. RESULTS 5-HIAA promoted NET production in vitro, and the nuclei of neutrophils secreting NET-like structures express AHR. In animal experiments, 5-HIAA levels were higher in both the plasma and lung tissues of COPD mice compared with normal mice. Inhibition of 5-HIAA in COPD mice down-regulated AHR expression, reduced reactive oxygen species and NET generation, elevated lung function indices (FEV0.1, FVC, PEF, and FEV0.1/FVC), decreased interleukin-6 levels, and improved lung tissue condition. CONCLUSION Inhibiting 5-HIAA reduces NET generation, thereby improving lung conditions in COPD mice, which is associated with the 5-HIAA/AHR pathway.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lei Xue
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wu Li
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Liang
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weijia Zhou
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Xiong
- Department of Geriatrics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Del Sorbo L, Cerracchio C, Serra F, Canzanella S, Giugliano R, Lambiase S, Aránguiz NP, Esposito M, Amoroso MG, Fusco G, Fiorito F. Canine coronavirus infection is intensified by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Toxicol 2025:10.1007/s00204-025-03981-w. [PMID: 39985684 DOI: 10.1007/s00204-025-03981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
In humans as well as in animals, the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) stimulates immunosuppression and increases responsiveness to infectious diseases. The relationship between environmental contaminants and different infectious diseases, including COVID-19, has been described. Nevertheless, reports about the potential impact of TCDD on coronaviruses (CoVs) are limited. In this study, the impact of TCDD (0-100 pg/mL) was assessed during infection in vitro with canine coronavirus (CCoV-II), the alphaCoV causing moderate enteric disease in dogs, although genetic alterations may surprisingly generate new dangerous strains. For instance, outbreaks of lethal infections in dogs were related to highly virulent CCoV strains, and cases of pneumonia and malaise in humans were associated with new canine-feline recombinant strains of CCoV, underlining the cross-species spread capability of CoVs. Herein, during CCoV infection, TCDD induced a substantial growth in virus yield and in the expression of viral nucleocapsid protein in infected groups. Infected cells exhibited alterations in cell morphology, extensively enhanced by TCDD. Moreover, in infection, TCDD modulated the protein levels of aryl hydrocarbon receptor (AHR), a signaling responsive to both environmental contaminant and CoVs infections. Overall, our findings showed that TCDD, playing a role in AHR signaling, may worsen CCoV infection.
Collapse
Affiliation(s)
- Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Silvia Canzanella
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Rosa Giugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Sara Lambiase
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | | | - Mauro Esposito
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | | | - Giovanna Fusco
- Istituto Zooprofilattico del Mezzogiorno, Portici, 80055, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy.
| |
Collapse
|
3
|
Maitre M, Taleb O, Jeltsch-David H, Klein C, Mensah-Nyagan AG. Xanthurenic acid: A role in brain intercellular signaling. J Neurochem 2024; 168:2303-2315. [PMID: 38481090 DOI: 10.1111/jnc.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 10/04/2024]
Abstract
Xanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively. The present paper critically reviews and discusses all major data related to XA properties and neuronal activities to contribute to the improvement of the current knowledge on XA's central roles and mechanisms of action. In particular, our data showed the existence of a specific G-protein-coupled receptor (GPCR) for XA localized exclusively in brain neurons exhibiting Ca2+-dependent dendritic release and specific electrophysiological responses. XA properties and central activities suggest a role for this compound in brain intercellular signaling. Indeed, XA stimulates cerebral dopamine (DA) release contrary to its structural analog, kynurenic acid (KYNA). Thus, KYNA/XA ratio could be fundamental in the regulation of brain glutamate and DA release. Cerebral XA may also represent an homeostatic signal between the periphery and several brain regions where XA accumulates easily after peripheral administration. Therefore, XA status in certain psychoses or neurodegenerative diseases seems to be reinforced by its brain-specific properties in balance with its formation and peripheral inputs.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS/Université de Strasbourg, Illkirch Cedex, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| |
Collapse
|
4
|
Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: frenemies within the gut. Front Public Health 2024; 12:1285186. [PMID: 38799688 PMCID: PMC11116734 DOI: 10.3389/fpubh.2024.1285186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution is a critical concern of modern society for its heterogeneous effects on human health, despite a widespread lack of awareness. Environmental pollutants promote several pathologies through different molecular mechanisms. Pollutants can affect the immune system and related pathways, perturbing its regulation and triggering pro-inflammatory responses. The exposure to several pollutants also leads to alterations in gut microbiota with a decreasing abundance of beneficial microbes, such as short-chain fatty acid-producing bacteria, and an overgrowth of pro-inflammatory species. The subsequent intestinal barrier dysfunction, together with oxidative stress and increased inflammatory responses, plays a role in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, pollutants encourage the inflammation-dysplasia-carcinoma sequence through various mechanisms, such as oxidative stress, dysregulation of cellular signalling pathways, cell cycle impairment and genomic instability. In this narrative review, we will describe the interplay between pollutants, gut microbiota, and the immune system, focusing on their relationship with inflammatory bowel diseases and colorectal cancer. Understanding the biological mechanisms underlying the health-to-disease transition may allow the design of public health policies aimed at reducing the burden of disease related to pollutants.
Collapse
Affiliation(s)
| | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Hameed S, Karim N, Wasay M, Venketasubramanian N. Emerging Stroke Risk Factors: A Focus on Infectious and Environmental Determinants. J Cardiovasc Dev Dis 2024; 11:19. [PMID: 38248889 PMCID: PMC10816862 DOI: 10.3390/jcdd11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This review focuses on emerging risk factors for stroke, including air pollution and climate change, gut microbiota, high altitude, and systemic infection. Up to 14% of all stroke-associated mortality is attributed to air pollution and is more pronounced in developing countries. Fine particulate matter and other air pollutants contribute to an increased stroke risk, and this risk appears to increase with higher levels and duration of exposure. Short term air pollution exposure has also been reported to increase the stroke risk. The gut microbiota is a complex ecosystem of bacteria and other microorganisms that reside in the digestive system and affect multiple body systems. Disruptions in the gut microbiota may contribute to stroke development, possibly by promoting inflammation and atherosclerosis. High altitudes have been associated with erythrocytosis and cerebrovascular sinus thrombosis, but several studies have reported an increased risk of thrombosis and ischemic stroke at high altitudes, typically above 3000 m. Systemic infection, particularly infections caused by viruses and bacteria, can also increase the risk of stroke. The risk seems to be greatest in the days to weeks following the infection, and the pathophysiology is complex. All these emerging risk factors are modifiable, and interventions to address them could potentially reduce stroke incidence.
Collapse
Affiliation(s)
- Sajid Hameed
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Nurose Karim
- Department of Neurology, East Carolina University, Greenville, NC 27834, USA;
| | - Mohammad Wasay
- Department of Neurology, Aga Khan University, Karachi 74800, Pakistan;
| | | |
Collapse
|
6
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|