1
|
Hamdi D, Hafidi A, Lemaire JJ, Messaoud C. A comparative study of secondary metabolites profiling and biological activity of Smyrnium olusatrum L. leaf, flower and fruit. Nat Prod Res 2024:1-15. [PMID: 38415755 DOI: 10.1080/14786419.2024.2321484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Essential oil (EO) composition of Smyrnium olusatrum was characterised by high proportion of furanosesquiterpenes (51.66-69.35%). The leaf methanolic extract composition was found to be rich with Quercetin-O-hexoside (39.78%). Apigenin 6,8-di-Chexoside represent the major component of flower (18.2%) and fruits (18.82%). Flower extract exhibited the highest contents of total phenolic (48.97 mg GAE/g) and flavonoid (52.63 mg RE/g). The β-carotene and lycopene contents were in the order of 4.55-26.14 mg/100g, and 8.00-49.45 mg/100g, respectively. Methanolic extracts and EOs of different organs were found to possess antioxidant activities, as determined by scavenging effect, chelating activity and β-carotene-linoleic acid model system. Furthermore, Fruit S. olusatrum EO exhibited a potent inhibitory activity against Acetylcholinesterase, while the methanolic extract showed a weaker activity. The methanolic extract displayed inhibitory effects on α-amylase, whereas the EOs was not as efficient in inhibiting this enzyme. The observed level of biological activities varied depending on the specific extracts and organs studied.
Collapse
Affiliation(s)
- Dhouha Hamdi
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage National Institute of Applied Science and Technology UR17ES22, Tunis Cedex, Tunisia
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Aziz Hafidi
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Jean Jacques Lemaire
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Chokri Messaoud
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage National Institute of Applied Science and Technology UR17ES22, Tunis Cedex, Tunisia
| |
Collapse
|
2
|
Elshamy S, Handoussa H, El-Shazly M, Mohammed ED, Kuhnert N. Metabolomic profiling and quantification of polyphenols from leaves of seven Acacia species by UHPLC-QTOF-ESI-MS. Fitoterapia 2024; 172:105741. [PMID: 37951277 DOI: 10.1016/j.fitote.2023.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
The genus Acacia (Fabaceae) comprises >1350 species and has been used in traditional medicine as infusions and decoctions to treat wounds, sores, headaches, diarrhea, and cough. The leaf methanolic extracts of seven Acacia species growing in Egypt namely: Acacia saligna, Acacia seyal, Acacia xanthophloea, Acacia tortilis subsp. raddiana., Acacia tortilis, Acacia laeta, Acacia albida were analyzed using UPLC-QTOF-ESI-MS. A total of 37 polyphenols were identified and discussed in detail. They included phenolic acids, flavonoids, and procyanidins, among which sixteen polyphenols were identified in Acacia for the first time. Folin-ciocalteau assay and ferric reducing antioxidant power, cupric reducing antioxidant capacity, 2,20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) cation radical and the scavenging capacity against 2,2-diphenyl-1- picrylhydrazyl radical were performed to investigate the total phenolic content and the antioxidant activity of the Acacia extracts, respectively. Furthermore, the absolute quantification of eighteen polyphenols common to most of the species was performed using UPLC-MS. It was evident that the differences in the chemical composition among the species accounted for the difference in antioxidant activity which was in line together with the total phenolic content.
Collapse
Affiliation(s)
- Salma Elshamy
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman D Mohammed
- Department of Medicinal and Aromatic Plants, Natural Products Unit, Desert Research Center, Cairo, Egypt; Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nikolai Kuhnert
- School of Science, Constructor University, Campusring 8, 28759 Bremen, Germany.
| |
Collapse
|
3
|
Buathong R, Duangsrisai S. Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 2023; 11:e14568. [PMID: 36879911 PMCID: PMC9985418 DOI: 10.7717/peerj.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Background Seeking cures for chronic inflammation-associated diseases and infectious diseases caused by critical human pathogens is challenging and time-consuming. Even as the research community searches for novel bioactive agents, consuming a healthy diet with functional ability might be an effective way to delay and prevent the progression of severe health conditions. Many plant ingredients in Thai food are considered medicinal, and these vegetables, herbs, and spices collectively possess multiple biological and pharmacological activities, such as anti-inflammatory, antimicrobial, antidiabetic, antipyretic, anticancer, hepatoprotective, and cardioprotective effects. Methodology In this review, the selected edible plants are unspecific to Thai food, but our unique blend of recipes and preparation techniques make traditional Thai food healthy and functional. We searched three electronic databases: PUBMED, Science Direct, and Google Scholar, using the specific keywords "Plant name" followed by "Anti-inflammatory" or "Antibacterial" or "Antiviral" and focusing on articles published between 2017 and 2021. Results Our selection of 69 edible and medicinal plant species (33 families) is the most comprehensive compilation of Thai food sources demonstrating biological activities to date. Focusing on articles published between 2017 and 2021, we identified a total of 245 scientific articles that have reported main compounds, traditional uses, and pharmacological and biological activities from plant parts of the selected species. Conclusions Evidence indicates that the selected plants contain bioactive compounds responsible for anti-inflammatory, antibacterial, and antiviral properties, suggesting these plants as potential sources for bioactive agents and suitable for consumption for health benefits.
Collapse
Affiliation(s)
- Raveevatoo Buathong
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Shao H, Xiao M, Zha Z, Olatunji OJ. UHPLC-ESI-QTOF-MS 2 analysis of Acacia pennata extract and its effects on glycemic indices, lipid profile, pancreatic and hepatorenal alterations in nicotinamide/streptozotocin-induced diabetic rats. Food Sci Nutr 2022; 10:1058-1069. [PMID: 35432973 PMCID: PMC9007297 DOI: 10.1002/fsn3.2732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic disorder associated with severe metabolic derangement and comorbidities. The constant increase in the global population of diabetic patients coupled with some prevailing side effects associated with synthetic antidiabetic drugs has necessitated the urgent need for the search for alternative antidiabetic regimens. This study investigated the antidiabetic, antioxidant, and pancreatic protective effects of the Acacia pennata extract (APE) against nicotinamide/streptozotocin induced DM in rats. The antidiabetic activity of APE was evaluated and investigated at doses of 100 and 400 mg/kg body weight, while metformin (150 mg/kg bw) was used as a standard drug. APE markedly decreased blood glucose level, homeostatic model assessment for insulin resistance, serum total cholesterol, triglycerides, low‐density lipoprotein, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, and alanine phosphatase levels. Additionally, treatment with APE increased the body weight, serum insulin concentration, and high‐density lipoprotein. Moreover, activities of pancreatic superoxide dismutase, catalase, and glutathione peroxidase were increased, while the altered pancreatic architecture in the histopathological examination was notably restored in the treated rats. Ultra‐high performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry (UHPLC‐ESI‐QTOF‐MS) analysis of APE showcases the prevailing presence of polyphenolic compounds. Conclusively, this study showed the beneficial effects of the Acacia pennata in controlling metabolic derangement, pancreatic and hepatorenal dysfunction in diabetic rats.
Collapse
Affiliation(s)
- Hui Shao
- Department of Clinical Laboratory East China Normal University Affiliated Wuhu Hospital Wuhu China
| | - Minmin Xiao
- Department of Clinical Laboratory East China Normal University Affiliated Wuhu Hospital Wuhu China
| | - Zheng Zha
- Department of Clinical Laboratory East China Normal University Affiliated Wuhu Hospital Wuhu China
| | | |
Collapse
|
5
|
Ruangsuriya J, Wongpoomchai R, Srichairatanakool S, Sirikul W, Buawangpong N, Siviroj P. Guava Fruit and Acacia pennata Vegetable Intake Association with Frailty of Older Adults in Northern Thailand. Nutrients 2022; 14:nu14061192. [PMID: 35334846 PMCID: PMC8954598 DOI: 10.3390/nu14061192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
As Thailand moves toward an aging society, frailty has become a concern amongst northern Thai elderly. The causes of frailty are multifactorial and include genetic, environmental, and socio-economic factors; diet is of particular interest. A cross-sectional study was conducted from September to October 2017 to investigate what kind of diets normally consumed by 350 Thai elders were associated with frailty using a questionnaire and frailty determination by Fried’s phenotype followed by phytochemical analyses of the diets. The multivariable logistic regression analysis demonstrated a significant positive association between certain foods and lower frailty. Guava fruit and Acacia pennata vegetable consumption had lower odds of frailty, which were 0.52 times (95% CI 0.28−0.96, p = 0.037) and 0.42 times (95% CI 0.21−0.83, p = 0.012) when adjusted for the potential confounders. The phytochemical analyses of guava fruit showed a significantly higher amount of total flavonoids (p < 0.001), total phenolic compounds (p = 0.002), and antioxidant capacity, including DPPH (p < 0.001), ABTS (p < 0.001), and FRAP (p = 0.002) when compared to those of banana. Acacia pennata vegetable contained a significantly higher amount of total phenolic compounds (p = 0.012) when compared to those of lettuce. These findings may assist in health promotion programs of frailty prevention by encouraging an increase in consumption of either guava fruit or Acacia pennata vegetable among Thai elderly.
Collapse
Affiliation(s)
- Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (R.W.); (S.S.)
- Functional Food Research Center for Well-Being, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (R.W.); (S.S.)
- Functional Food Research Center for Well-Being, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (J.R.); (R.W.); (S.S.)
| | - Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Data Analytics and Knowledge Synthesis for Health Care, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nida Buawangpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Penprapa Siviroj
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence:
| |
Collapse
|
6
|
Zothantluanga JH, Gogoi N, Shakya A, Chetia D, Lalthanzara H. Computational guided identification of potential leads from Acacia pennata (L.) Willd. as inhibitors for cellular entry and viral replication of SARS-CoV-2. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:201. [PMID: 34660817 PMCID: PMC8502097 DOI: 10.1186/s43094-021-00348-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in 2019 and is still an on-going pandemic. SARS-CoV-2 uses a human protease called furin to aid in cellular entry and its main protease (Mpro) to achieve viral replication. By targeting these proteins, scientists are trying to identify phytoconstituents of medicinal plants as potential therapeutics for COVID-19. Therefore, our study was aimed to identify promising leads as potential inhibitors of SARS-CoV-2 Mpro and furin using the phytocompounds reported to be isolated from Acacia pennata (L.) Willd. RESULTS A total of 29 phytocompounds were reported to be isolated from A. pennata. Molecular docking simulation studies revealed 9 phytocompounds as having the top 5 binding affinities towards SARS-CoV-2 Mpro and furin. Among these phytocompounds, quercetin-3-O-α-L-rhamnopyranoside (C_18), kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside (C_4), and isovitexin (C_5) have the highest drug score. However, C_18 and C_4 were not selected for further studies due to bioavailability issues and low synthetic accessibility. Based on binding affinity, molecular properties, drug-likeness, toxicity parameters, ligand interactions, bioavailability, synthetic accessibility, structure-activity relationship, and comparative analysis of our experimental findings with other studies, C_5 was identified as the most promising phytocompound. C_5 interacted with the active site residues of SARS-CoV-2 Mpro (GLU166, ARG188, GLN189) and furin (ASN295, ARG298, HIS364, THR365). Many phytocompounds that interacted with these amino acid residues were reported by other studies as potential inhibitors of SARS-CoV-2 Mpro and furin. The oxygen atom at position 18, the -OH group at position 19, and the 6-C-glucoside were identified as the pharmacophores in isovitexin (also known as apigenin-6-C-glucoside). Other in-silico studies reported apigenin as a potential inhibitor of SARS-CoV-2 Mpro and apigenin-o-7-glucuronide was reported to show stable conformation during MD simulations with SARS-CoV-2 Mpro. CONCLUSION The present study found isovitexin as the most promising phytocompound to potentially inhibit the cellular entry and viral replication of SARS-CoV-2. We also conclude that compounds having oxygen atom at position 18 (C-ring), -OH group at position 19 (A-ring), and 6-C-glucoside attached to the A-ring at position 3 on a C6-C3-C6 flavonoid scaffold could offer the best alternative to develop new leads against SARS-CoV-2.
Collapse
Affiliation(s)
- James H. Zothantluanga
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Neelutpal Gogoi
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Anshul Shakya
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Dipak Chetia
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - H. Lalthanzara
- grid.411813.e0000 0000 9217 3865Department of Zoology, Pachhunga Univeristy College, Aizawl, Mizoram 796001 India
| |
Collapse
|