1
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
2
|
Mehrabi A, Rahimnejad M, Mohammadi M, Pourali M. Electrochemical detection of Flutamide as an anticancer drug with gold nanoparticles modified glassy carbon electrode in the presence of prostate cancer cells. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01519-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Tseng TW, Rajaji U, Chen TW, Chen SM, Huang YC, Mani V, Irudaya Jothi A. Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2020; 69:105242. [PMID: 32673961 DOI: 10.1016/j.ultsonch.2020.105242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015-1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM-1 cm-2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Umamaheswari Rajaji
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Yi-Chen Huang
- Electroanalysis and Biotelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - A Irudaya Jothi
- Department of Chemistry, St. Joseph's College (Autonomous), Tiruchirappalli 620002, (Affiliated to Bharathidasan University, Tiruchirappali 620024), Tamilnadu, India
| |
Collapse
|
4
|
Afzali M, Mostafavi A, Shamspur T. Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
5
|
Mehrabi A, Rahimnejad M, Mohammadi M, Pourali M. Electrochemical detection of flutamide with gold electrode as an anticancer drug. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Saka C. Electroanalytical Approaches for Determination of Prostate Cancer Drugs in Biological Samples and Dosage Forms. Crit Rev Anal Chem 2019; 49:403-414. [DOI: 10.1080/10408347.2018.1538768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cafer Saka
- School of Healthy, Siirt University, Siirt, Turkey
| |
Collapse
|
7
|
Abdelwahab NS, Elshemy HAH, Farid NF. Determination of flutamide and two major metabolites using HPLC-DAD and HPTLC methods. Chem Cent J 2018; 12:4. [PMID: 29372342 PMCID: PMC5785457 DOI: 10.1186/s13065-018-0372-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
Flutamide is a potential antineoplastic drug classified as an anti-androgen. It is a therapy for men with advanced prostate cancer, administered orally after which it undergoes extensively first pass metabolism in the liver with the production of several metabolites. These metabolites are predominantly excreted in urine. One of the important metabolites in plasma is 4-nitro-3-(trifluoromethyl)phenylamine (Flu-1), while the main metabolite in urine is 2-amino-5-nitro-4-(trifluoromethyl)phenol (Flu-3). In this work the two metabolites, Flu-1 and Flu-3, have been synthesized, and then structural confirmation has been carried out by HNMR analysis. Efforts were exerted to develop chromatographic methods for resolving Flutamide and its metabolites with the use of acceptable solvents without affecting the efficiency of the methods. The drug along with its metabolites were quantitatively analyzed in pure form, human urine, and plasma samples using two chromatographic methods, HPTLC and HPLC-DAD methods. FDA guidelines for bio-analytical method validation were followed and USP recommendations were used for analytical method validation. Interference from excipients has been tested by application of the methods to pharmaceutical tablets. No significant difference was found between the proposed methods and the official one when they were statistically compared at p value of 0.05%.
Collapse
Affiliation(s)
- Nada S. Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-suef University, Beni-Suef, Egypt
- Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Sharq El-Nile, Beni-Suef, 62511 Egypt
| | - Heba A. H. Elshemy
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nehal F. Farid
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Švorc Ľ, Borovská K, Cinková K, Stanković DM, Planková A. Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
David IG, Popa DE, Buleandra M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1905968. [PMID: 28255500 PMCID: PMC5307002 DOI: 10.1155/2017/1905968] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Dana-Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| |
Collapse
|