1
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
2
|
Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA, Moradi A. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
de Magalhães Silva M, de Araújo Dantas MD, da Silva Filho RC, Dos Santos Sales MV, de Almeida Xavier J, Leite ACR, Goulart MOF, Grillo LAM, de Barros WA, de Fátima Â, Figueiredo IM, Santos JCC. Toxicity of thimerosal in biological systems: Conformational changes in human hemoglobin, decrease of oxygen binding capacity, increase of protein glycation and amyloid's formation. Int J Biol Macromol 2020; 154:661-671. [PMID: 32198046 DOI: 10.1016/j.ijbiomac.2020.03.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Thimerosal (TH), an organomercurial compound, is used as a preservative in vaccines and cosmetics. Its interaction with human hemoglobin (Hb) was investigated under physiological conditions using biophysical and biological assays, aiming to evaluate hazardous effects. TH interacts spontaneously with Hb (stoichiometry 2:1, ligand-protein), preferably by electrostatic forces, with a binding constant of 1.41 × 106 M-1. Spectroscopic data allows to proposing that TH induces structural changes in Hg, through ethylmercury transfer to human Hb-Cys93 residues, forming thiosalicylic acid, which, in turn, interacts with the positive side of the amino acid in the Hb-HgEt adduct chain. As a consequence, inhibition of Hb-O2 binding capacity up to 72% (human Hb), and 50% (human erythrocytes), was verified. Dose-dependent induction of TH forming advanced glycation end products (AGE) and protein aggregates (amyloids) was additionally observed. Finally, these results highlight the toxic potential of the use of TH in biological systems, with a consequent risk to human health.
Collapse
Affiliation(s)
- Marina de Magalhães Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Maria Dayanne de Araújo Dantas
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Reginaldo Correia da Silva Filho
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Marcos Vinicius Dos Santos Sales
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Jadriane de Almeida Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Ana Catarina Rezende Leite
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | | | - Wellington Alves de Barros
- Department of Chemistry, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Isis Martins Figueiredo
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | - Josué Carinhanha Caldas Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Campus A.C. Simões, 57072-900 Maceió, Alagoas, Brazil.
| |
Collapse
|
4
|
Egawa T, Ohno Y, Yokoyama S, Yokokawa T, Tsuda S, Goto K, Hayashi T. The Protective Effect of Brazilian Propolis against Glycation Stress in Mouse Skeletal Muscle. Foods 2019; 8:E439. [PMID: 31557885 PMCID: PMC6836237 DOI: 10.3390/foods8100439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
We investigated the protective effect of Brazilian propolis, a natural resinous substance produced by honeybees, against glycation stress in mouse skeletal muscles. Mice were divided into four groups: (1) Normal diet + drinking water, (2) Brazilian propolis (0.1%)-containing diet + drinking water, (3) normal diet + methylglyoxal (MGO) (0.1%)-containing drinking water, and (4) Brazilian propolis (0.1%)-containing diet + MGO (0.1%)-containing drinking water. MGO treatment for 20 weeks reduced the weight of the extensor digitorum longus (EDL) muscle and tended to be in the soleus muscle. Ingestion of Brazilian propolis showed no effect on this change in EDL muscles but tended to increase the weight of the soleus muscles regardless of MGO treatment. In EDL muscles, Brazilian propolis ingestion suppressed the accumulation of MGO-derived advanced glycation end products (AGEs) in MGO-treated mice. The activity of glyoxalase 1 was not affected by MGO, but was enhanced by Brazilian propolis in EDL muscles. MGO treatment increased mRNA expression of inflammation-related molecules, interleukin (IL)-1β, IL-6, and toll-like receptor 4 (TLR4). Brazilian propolis ingestion suppressed these increases. MGO and/or propolis exerted no effect on the accumulation of AGEs, glyoxalase 1 activity, and inflammatory responses in soleus muscles. These results suggest that Brazilian propolis exerts a protective effect against glycation stress by inhibiting the accumulation of AGEs, promoting MGO detoxification, and reducing proinflammatory responses in the skeletal muscle. However, these anti-glycation effects does not lead to prevent glycation-induced muscle mass reduction.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Shingo Yokoyama
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Takumi Yokokawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Katsumasa Goto
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi 440-8511, Japan.
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Kazemi F, Divsalar A, Saboury AA, Seyedarabi A. Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids Surf B Biointerfaces 2019; 177:188-195. [PMID: 30738325 DOI: 10.1016/j.colsurfb.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/30/2023]
Abstract
Nowadays diabetes, as a metabolic disorder, is increasing at an alarming rate. Glycation and production of advanced glycation end products (AGEs) is the most important factor involved in diabetic complications. Due to the side effects of synthetic drugs, the demand for natural anti-diabetic herbal medicines has increased. Propolis is a natural and resinous material, which iscollected by honeybees. Due to the impact of nanotechnology in medicine and the advantageous role of nanoparticles in treatment, nano-propolis particles (PNP) were prepared. The anti-glycation effect of PNP at various concentrations was investigated on human hemoglobin (Hb) glycation and fructation and compared with aspirin as a common anti-glycation agent using glycation specific AGE fluorescence, AGE-specific absorbance and circular dichroism (CD) methods. Fluorescence spectroscopy results showed that PNP inhibited the formation of AGEs in Hb glycation and fructation by glucose and fructose, respectively. CD results revealed that PNP caused an increase in Hb beta-sheet content while decreasing the alpha helical content. Additionally, the results of UV-Vis spectroscopy and fluorescence emission of heme degradation products revealed the protective effect of PNP on heme during glycation and fructation of human Hb. It is notable that the synergistic effects of combined propolis nanoparticles and aspirin is more than either of them alone. However, having said that, PNP as a natural product has a potential to be an effective drug in the treatment of diabetes.
Collapse
Affiliation(s)
- Fatemeh Kazemi
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| | - Arefeh Seyedarabi
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Xavier JDA, Valentim IB, Camatari FOS, de Almeida AMM, Goulart HF, Ferro JNDS, Barreto EDO, Cavalcanti BC, Bottoli CBG, Goulart MOF. Polyphenol profile by UHPLC-MS/MS, anti-glycation, antioxidant and cytotoxic activities of several samples of propolis from the northeastern semi-arid region of Brazil. PHARMACEUTICAL BIOLOGY 2017; 55:1884-1893. [PMID: 28631525 PMCID: PMC6131762 DOI: 10.1080/13880209.2017.1340962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/13/2017] [Accepted: 06/07/2017] [Indexed: 06/13/2023]
Abstract
CONTEXT Propolis has promising biological activities. Propolis samples from the Northeast of Bahia, Brazil - sample A from Ribeira do Pombal and B, from Tucano - were investigated, with new information regarding their biological activities. OBJECTIVE This paper describes the chemical profile, antioxidant, anti-glycation and cytotoxic activities of these propolis samples. MATERIAL AND METHODS Ethanol extracts of these propolis samples (EEP) and their fractions were analyzed to determine total phenolic content (TPC); antioxidant capacity through DPPH•, FRAP and lipid peroxidation; anti-glycation activity, by an in vitro glucose (10 mg/mL) bovine serum albumine (1 mg/mL) assay, during 7 d; cytotoxic activity on cancer (SF295, HCT-116, OVCAR-8, MDA-MB435, MX-1, MCF7, HL60, JURKAT, MOLT-4, K562, PC3, DU145) and normal cell lines (V79) at 0.04-25 μg/mL concentrations, for 72 h. The determination of primary phenols by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and volatile organic compounds content by gas chromatography-mass spectrometry (GC-MS) were also performed. RESULTS The EEP polar fractions exhibited up to 90% protection against lipid peroxidation. The IC50 value for anti-glycation activity of EEP was between 16.5 and 19.2 μg/mL, close to aminoguanidine (IC50 = 7.7 μg/mL). The use of UHPLC-MS/MS and GC-MS allowed the identification of 12 bioactive phenols in the EEP and 24 volatile compounds, all already reported. CONCLUSIONS The samples present good antioxidant/anti-glycation/cytotoxic activities and a plethora of biologically active compounds. These results suggest a potential role of propolis in targeting ageing and diseases associated with oxidative and carbonylic stress, aggregating value to them.
Collapse
Affiliation(s)
| | - Iara Barros Valentim
- Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (IFAL), Rua Mizael Domingues, Maceió, AL, Brazil
| | - Fabiana O. S. Camatari
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Henrique Fonseca Goulart
- Laboratório de Pesquisas em Recursos Naturais, Centro de Ciências Agrárias (CECA), UFAL, Rio Largo, AL, Brazil
| | | | | | - Bruno Coelho Cavalcanti
- Departamento de Fisiologia e Farmacologia, Laboratório Nacional de Oncologia Experimental, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | |
Collapse
|