1
|
Pandit NT, Kamble SB. The Petasis Reaction: Applications and Organic Synthesis-A Comprehensive Review. Top Curr Chem (Cham) 2025; 383:7. [PMID: 39856385 DOI: 10.1007/s41061-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The Petasis reaction has introduced significant advancements through the use of various catalysts, solvents, methodologies, and substrates in diverse areas of chemistry, including medicinal, organic, combinatorial, biochemical, and heterocyclic chemistry. It is a prominent method for synthesizing compounds such as α-amino acids, β-amino alcohols, Aza-beta-lactams, alkylaminophenols, α-arylglycines, 2H-chromenes, aminophenols, and hydrazide alcohols. With the increasing demand for medicines, drugs, industrial products, insecticides, and pesticides, the Petasis reaction has become an indispensable and versatile tool. This review explores the range of reaction components, key mechanisms, and reaction conditions associated with the Petasis reaction. Additionally, the paper delves into the potential future directions of this reaction and highlights its various applications.
Collapse
Affiliation(s)
- Nilesh T Pandit
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India
| | - Santosh B Kamble
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India.
| |
Collapse
|
2
|
Hosseinzadeh R, Zarei S, Valipour Z, Maleki B. A vitamin C-based natural deep eutectic solvent for the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives. Heliyon 2024; 10:e37170. [PMID: 39397899 PMCID: PMC11467633 DOI: 10.1016/j.heliyon.2024.e37170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/18/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Efficient and green protocols were reported to synthesize 2,3-dihydroquinazolin-4(1H)-one derivatives in natural deep eutectic solvent (NADES). NADES was prepared from ascorbic acid (AA) and choline chloride (ChCl) with reduced or null toxicity, biocompatibility, and low cost. The ChCl/AA NADES was successfully used in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives via the condensation reaction of aldehydes with 2-aminobenzamide and the three-component reactions of aldehydes, isatoic anhydrides and ammonium salts under solvent-free conditions. The scope of this method was evaluated by employing various aromatic, heterocyclic, and aliphatic aldehydes. The desired products were achieved in 85-97 % yield in a short reaction time. Also, the deep eutectic solvent ChCl/AA showed good recyclability and reusability.
Collapse
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Shiva Zarei
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Zohreh Valipour
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Saeed S, Munawar S, Ahmad S, Mansha A, Zahoor AF, Irfan A, Irfan A, Kotwica-Mojzych K, Soroka M, Głowacka M, Mojzych M. Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules 2023; 28:8032. [PMID: 38138522 PMCID: PMC10745964 DOI: 10.3390/molecules28248032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The Petasis reaction, also called the Petasis Borono-Mannich reaction, is a multicomponent reaction that couples a carbonyl derivative, an amine and boronic acids to yield substituted amines. The reaction proceeds efficiently in the presence or absence of a specific catalyst and solvent. By employing this reaction, a diverse range of chiral derivatives can easily be obtained, including α-amino acids. A broad substrate scope, high yields, distinct functional group tolerance and the availability of diverse catalytic systems constitute key features of this reaction. In this review article, attention has been drawn toward the recently reported methodologies for executing the Petasis reaction to produce structurally simple to complex aryl/allyl amino scaffolds.
Collapse
Affiliation(s)
- Sadaf Saeed
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Saba Munawar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Sajjad Ahmad
- Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan;
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (S.S.); (S.M.); (A.M.); (A.I.)
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology of the Department of Basic Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Malgorzata Soroka
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariola Głowacka
- Faculty of Health Sciences, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
| | - Mariusz Mojzych
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, Pl. Dąbrowskiego 2, 09-402 Płock, Poland;
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
4
|
Ulaş Y. Use of Anilines in the Petasis Reaction: DFT Mechanistic Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Di JQ, Wang HJ, Cui ZS, Hu JY, Zhang ZH. Catalyst-free Synthesis of Aminomethylphenol Derivatives in Cyclopentyl Methyl Ether via Petasis Borono-Mannich Reaction. Curr Org Synth 2021; 18:294-300. [PMID: 33327919 DOI: 10.2174/1570179417666201216161143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Aminomethylphenol molecules have wider applications in pharmaceuticals, agrochemicals, plant protection and promising functional materials. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of view. MATERIALS AND METHODS In order to establish an effective synthetic method for preparing aminomethylphenol derivatives, the Petasis borono-Mannich reaction of salicylaldehyde, phenylboronic acid and 1,2,3,4- tetrahydroisoquinoline was selected as a model reaction. A variety of reaction conditions are investigated, including solvent and temperature. The generality and limitation of the established method were also evaluated. RESULTS AND DISCUSSION It was found that model reaction can be carried out in cyclopentyl methyl ether at 80 oC under catalyst-free conditions. This protocol, with broad substrate applicability, the reaction of various arylboronic acid, secondary amine and salicylaldehyde proceeded smoothly under optimal reaction conditions to afford various aminomethylphenol derivatives in high yields. A practical, scalable, and high-yielding synthesis of aminomethylphenol derivatives was successfully accomplished. CONCLUSION A catalyst-free practical method for the synthesis of minomethylphenol derivatives based on Petasis borono-Mannich (PBM) reaction of various arylboronic acid, secondary amine and salicylaldehyde in cyclopentyl methyl ether has been developed. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of cyclopentyl methyl ether as the reaction medium, clean reaction profiles, easy operation, and high to excellent yield.
Collapse
Affiliation(s)
- Jia-Qi Di
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao-Jie Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhen-Shui Cui
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jin-Yong Hu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
6
|
Ulaş Y. THEORETICAL AND EXPERIMENTAL INVESTIGATION
OF 2-((4-(HYDROXYMETHYL)PHENYL)(PYRROLIDIN-1-YL)
METHYL)PHENOL: SYNTHESIS, SPECTROSCOPIC
(FTIR, UV, NMR) STUDIES, AND NLO ANALYSIS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Hosseinzadeh R, Fathalipour F, Tajbakhsh M, Mavvaji M, Pooryousef M. Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Through a One-Pot Three Component Reaction of Boronic Acids, Sodium Azide and Active Methylene Compounds Under Ball-Milling Conditions. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1757473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Fathalipour
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Mavvaji
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mona Pooryousef
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
8
|
Wang CY, Han JB, Wang L, Tang XY. Lewis Acid Catalyzed [4 + 2] Cycloaddition of N-Tosylhydrazones with ortho-Quinone Methides. J Org Chem 2019; 84:14258-14269. [PMID: 31599153 DOI: 10.1021/acs.joc.9b02040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A formal [4 + 2] cycloaddition of N-tosylhydrazones with ortho-quinone methides was developed, affording the facile synthesis of diverse 1,3-oxazine derivatives under mild conditions. In this transformation, N-tosylhydrazones are used as a 1,2-dipole synthon under base-free conditions. Moreover, the substrate scope is broad, and the products are formed with high diastereoselectivities in most of the cases.
Collapse
Affiliation(s)
- Chun-Ying Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Jia-Bin Han
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , People's Republic of China
| |
Collapse
|
9
|
Wu P, Givskov M, Nielsen TE. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem Rev 2019; 119:11245-11290. [PMID: 31454230 PMCID: PMC6813545 DOI: 10.1021/acs.chemrev.9b00214] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The Petasis boron-Mannich reaction, simply referred to as the Petasis reaction, is a powerful multicomponent coupling reaction of a boronic acid, an amine, and a carbonyl derivative. Highly functionalized amines with multiple stereogenic centers can be efficiently accessed via the Petasis reaction with high levels of both diastereoselectivity and enantioselectivity. By drawing attention to examples reported in the past 8 years, this Review demonstrates the breadth of the reactivity and synthetic applications of Petasis reactions in several frontiers: the expansion of the substrate scope in the classic three-component process; nonclassic Petasis reactions with additional components; Petasis-type reactions with noncanonical substrates, mechanism, and products; new asymmetric versions assisted by chiral catalysts; combinations with a secondary or tertiary transformation in a cascade- or sequence-specific manner to access structurally complex, natural-product-like heterocycles; and the synthesis of polyhydroxy alkaloids and biologically interesting molecules.
Collapse
Affiliation(s)
- Peng Wu
- Chemical
Genomics Center of the Max Planck Society, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Michael Givskov
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Thomas E. Nielsen
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
10
|
One-pot pseudo three-component condensation reaction of arylglyoxal monohydrates with 1-ethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione for the synthesis of new pyrano[2,3-d:6,5-d’]dipyrimidines as HIV integrase inhibitor-like frameworks using two different environmentally benign catalytic systems. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01642-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Leonardi M, Villacampa M, Menéndez JC. Multicomponent mechanochemical synthesis. Chem Sci 2018; 9:2042-2064. [PMID: 29732114 PMCID: PMC5909673 DOI: 10.1039/c7sc05370c] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Historically, the use of mechanochemical methods in synthesis has been almost negligible, but their perception by the synthetic community has changed in recent years and they are on their way to becoming mainstream. However, the hybridization of mechanochemical synthesis with methodologies designed to increase synthetic efficiency by allowing the generation of several bonds in a single operation has taken off only recently, but it already constitutes a very promising approach to sustainable chemistry. In this context, we provide in this Perspective a critical summary and discussion of the main known synthetic methods based on mechanochemical multicomponent reactions.
Collapse
Affiliation(s)
- Marco Leonardi
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica , Departamento de Química en Ciencias Farmacéuticas , Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain .
| |
Collapse
|