1
|
M Galindo J, M Andreu C, Merino S, Herrero MA, Vázquez E, Sánchez-Migallón AM, Castañeda G. Few-layer graphene-hybrid sulfonate hydrogels for high-efficient adsorption of heavy metal (Pb 2+, Ni 2+, Cd 2+) in water treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117934. [PMID: 39987687 DOI: 10.1016/j.ecoenv.2025.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Heavy metal ions pose a significant environmental threat due to their non-degradability and accumulation to toxic levels. In addressing this challenge, we have designed two novel hydrogels through radical polymerization, an efficient and cost-effective method, using sulfonate groups. One hydrogel remained pristine, while the other was hybridized with few-layer graphene (FLG). The incorporation of FLG interacts with the polymeric network without compromising its thermal stability, as confirmed by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). It also reduces pore size (from 42 to 35 µm), enhances mechanical properties (Young's modulus increased from 32 to 44 kPa), and increases the swelling degree (from 62 to 76), while maintaining a high adsorption capacity. The ability of both hydrogels to adsorb Pb²⁺, Ni²⁺, and Cd²⁺ ions from aqueous solutions was examined. These hydrogels demonstrated high adsorption capacity (qe), with maximum uptake of 631.7 mg/g for Pb²⁺, 633.3 mg/g for Ni²⁺, and 373.1 mg/g for Cd²⁺ in the pristine hydrogels (VBS) and 540.6 mg/g for Pb²⁺, 615.1 mg/g for Ni²⁺, and 304.9 mg/g for Cd²⁺ in the hybrid FLG hydrogels (VBS_G). Adsorption kinetics studies indicated a fit to the pseudo-second-order model for all metal ions. Adsorption isotherms showed that Pb²⁺, Cd²⁺ and Ni²⁺ follow the Freundlich model. To demonstrate reusability and regeneration, hydrogels with adsorbed ions were introduced into acidic media. Evaluating their performance in various water sources, the hydrogels showcased potential as efficient adsorbents for water purification and agricultural applications, offering a promising solution for contaminated water treatment.
Collapse
Affiliation(s)
- Josué M Galindo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain
| | - Carlos M Andreu
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain
| | - Sonia Merino
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain
| | - M Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain
| | - Ana M Sánchez-Migallón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain.
| | - Gregorio Castañeda
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, Ciudad Real 13071, Spain; Departamento de Química Analítica y Tecnología de Alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain.
| |
Collapse
|
2
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Zhang X, Zhu Y, Li Z, Li J, Wei S, Chen W, Ren D, Zhang S. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils. ENVIRONMENTAL RESEARCH 2023; 217:114968. [PMID: 36455628 DOI: 10.1016/j.envres.2022.114968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Evaluation joint cadmium (Cd) and copper (Cu) phytotoxicity in wide range of subtropical agricultural soils is highly vital for phytoremediation of soils contaminated with Cd and Cu. In this study, barley root elongation assays were performed in 30 representative soils in response to single and combined Cd and Cu inhibition. The single Cd caused nearly 50% inhibition of barley root elongation, and Cu induced more than 50% inhibition in most soils. Mixed Cd + Cu caused significant inhibition on barley growth with average relative root elongation values of 20.0% and 30.4% in soil with a pH < 7 and pH > 7, respectively. An antagonistic interaction was evaluated in combined Cd + Cu toxicity, which was strong in soils containing low soluble Cu and Cd contents. Soil pH was the controlling factor in predicting single and mixed Cd and Cu phytotoxicity, which could explain 44% and 46% variation of single Cd and Cu toxicity, respectively. Soil organic carbon and effective cation exchange capacity were another important factor positively influencing metal toxicity, which further improved empirical prediction models accuracy, with determined coefficient (r2) values of 0.44-0.84. These results provide a theoretical basis for soils Cd and Cu pollution control.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yuanjie Zhu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhuangzhuang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiong Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shan Wei
- College of Wuhan University, Wuhan, Hubei, 430081, China.
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
4
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Nguyen HT, Vuong Bui NT, Kanhounnon WG, Vu Huynh KL, Nguyen TVA, Nguyen HM, Do MH, Badawi M, Thach UD. Co-precipitation polymerization of dual functional monomers and polystyrene- co-divinylbenzene for ciprofloxacin imprinted polymer preparation. RSC Adv 2021; 11:34281-34290. [PMID: 35497320 PMCID: PMC9042346 DOI: 10.1039/d1ra05505d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Novel ciprofloxacin composite imprinted materials are synthesized by using co-precipitation polymerization of dual functional monomers (methacrylic acid and 2-vinylpyridine) and polystyrene-co-divinylbenzene. The intermolecular interactions between monomers and template are evaluated by molecular modeling analysis. The physicochemical properties of the obtained polymers are characterized using FT-IR, TGA, and SEM. Batch adsorption experiments are used to investigate adsorption properties (kinetic, pH, and isotherm). These polymers are employed to prepare the solid phase extraction cartridges, and their extraction performances are analyzed by the HPLC-UV method. DFT calculations indicate that hydrogen bonding and π−π stacking are the driving forces for the formation of selective rebinding sites. The obtained polymers exhibit excellent adsorption properties, including fast kinetics and high adsorption capacity (up to 10.28 mg g−1) with an imprinted factor of 2.55. The Scatchard analysis indicates the presence of specific high-affinity adsorption sites on the imprinted polymer. These absorbents are employed to extract CIP in river water with recoveries in the range of 65.97–119.26% and the relative standard deviation of 3.59–14.01%. Furthermore, the used cartridges could be reused at least eight times without decreasing their initial adsorption capacity. Ciprofloxacin imprinted polymers were prepared using co-precipitation polymerization of methacrylic acid, 2-vinylpyridine and polystyrene-co-divinylbenzene.![]()
Collapse
Affiliation(s)
- Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Nhat Thao Vuong Bui
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Wilfried G Kanhounnon
- Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d'Abomey-Calavi Benin
| | - Kim Long Vu Huynh
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Tran-Van-Anh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| | - Minh Huy Do
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine France
| | - Ut Dong Thach
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam +84 028 37 761 043
| |
Collapse
|
6
|
Kumar S, Balouch A, Alveroğlu E, Jagirani MS, Mughal MA, Mal D. Fabrication of nickel-tagged magnetic imprinted polymeric network for the selective extraction of Ni(II) from the real aqueous samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40022-40034. [PMID: 33770354 DOI: 10.1007/s11356-021-13375-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A new nickel ion, magnetic imprinted polymer was fabricated through the precipitation polymerization process, using amine-functionalized silica-capped iron oxide particles as a core material, and 4-vinyl pyridine as complexing agent methacrylic acid as functional monomer. The resulted magnetic adsorbent was employed to eliminate toxic Ni2+ ions from industrial wastewater. The different parameters were optimized, such as pH, shaking speed, and adsorbent dose, to obtain the maximum adsorption capacity. The synthesized material showed high selectivity coefficient for Ni+2 ions in the presence of other competitive ions and followed pseudo-second-order kinetics and Langmuir isotherm. A good adsorption capacity of 158.73 mg g-1 was obtained at optimized pH 6 in the concentration of 5 mg L-1 nickel ions aqueous solution. The limit of detection, quantification, and the percent relative standard deviation was found to be 0.58, 1.93, and 3.4%. This proves the excellent performance of prepared magnetic Ni(II) ion-imprinted polymer for selective detoxification of Ni2+ ions from real aqueous samples. Due to tunable magnetic properties, the prepared MMIPs are highly selective and sensitive and highly porous in nature; due to excellent magnetic properties, there is no need for centrifugation. Just use external magnetic field, it has good reusability. Showing preparation of Ni (II) imprinted magnetic polymer.
Collapse
Affiliation(s)
- Sagar Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan.
- Faculty of Science and Letters, Department of Physics Engineering, Istanbul Technical University, Maslak, 34467 Sariyer, Istanbul, Turkey.
| | - Esra Alveroğlu
- Faculty of Science and Letters, Department of Physics Engineering, Istanbul Technical University, Maslak, 34467 Sariyer, Istanbul, Turkey
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Moina Akhtar Mughal
- Dr. M.A. Kazi Institute of Chemistry University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Dadu Mal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| |
Collapse
|
7
|
Zhu F, Li L, Li N, Liu W, Liu X, He S. Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Liu P, Jia W, Ou X, Liu C, Zhang J, Chen Z, Li X. Study on Synthesis and Adsorption Properties of ReO 4 - Ion-Imprinted Polymer. ACS OMEGA 2020; 5:24356-24366. [PMID: 33015452 PMCID: PMC7528184 DOI: 10.1021/acsomega.0c02634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, an ion imprinted polymer (ReO4 --IIP) of the perrhenate ion based on acrylamide (AM) and acrylic acid (AA) was prepared by solution polymerization using ReO4 - as a template ion, N,N-methylenebisacrylamide (NMBA) as cross-linkers, hydrogen peroxide-vitamin C (H2O2-Vc) as an initiator, and a mixed solution of water (H2O) and methanol (CH3OH) with volume ratio v(H2O)/v(CH3OH) = 3:7 as a solvent. During the process of synthesis condition investigation and optimization, the adsorption capacity (Q) and the separation degree (R) in the equimolar concentration mixture solutions of NH4ReO4 and KMnO4 were adopted as indexes, and the obtained optimal conditions were as follows: the molar ratios of NMBA, NH4ReO4, AA, H2O2, and Vc to AM were 5.73, 0.052, 1.29, 0.02, and 0.003, and the temperature and time of polymerization were 40 °C and 28 h, respectively. Under optimal conditions, the sample with indexes, Q and R of 0.064 mmol/g and 3.20, were harvested. What is more, a further reusability study found that good adsorption selectivity was maintained after repeating the experiment 9 times. Taking the non-IP prepared under the same conditions as a control, Fourier transform infrared spectroscopy, transmission electron microscopy, and Brunauer Emmett Teller were used to characterize the structure of the ReO4 --IIP prepared under the optimal conditions. Finally, the kinetic study results showed that the zero-order kinetic model could better describe the adsorption process. The thermodynamic study results showed that the Langmuir model was more suitable for describing the isotherm adsorption process of the IIP.
Collapse
Affiliation(s)
- Pu Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| | - Weiwei Jia
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaojian Ou
- State
Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, Gansu, China
| | - Chunli Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Jun Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Zhenbin Chen
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaoming Li
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| |
Collapse
|
9
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
10
|
Dong G, Nkoh JN, Hong ZN, Dong Y, Lu HL, Yang J, Pan XY, Xu RK. Phytotoxicity of Cu 2+ and Cd 2+ to the roots of four different wheat cultivars as related to charge properties and chemical forms of the metals on whole plant roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110545. [PMID: 32276162 DOI: 10.1016/j.ecoenv.2020.110545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The relationship between the chemical forms of Cu2+ and Cd2+ adsorbed on the roots of different wheat cultivars and their phytotoxic effects on the plants were investigated. The wheat varieties Dunmaiwang (DMW), Tekang 6 (TK6), Zhongmai895 (ZM895), and Chaojixiaomai (AK68) were used. The zeta potentials of wheat roots, measured by the streaming potential method, were used to characterize root charge properties. Results indicated that the changes in zeta potential at pH 4.01-6.61 were 14.7, 15.53, 13.01, and 12.06 mV for ZM895, AK68, DMW, and TK6, respectively. The negative charge and functional groups on ZM895 and AK68 roots were greater than on DMW and TK6 roots, which led to more exchangeable and complexed Cu2+ and Cd2+ on ZM895 and AK68 roots and increased Cu2+ and Cd2+ toxicity compared to DMW and TK6. Coexisting cations, such as Ca2+, Mg2+, K+, and NH4+, alleviated Cu2+ and Cd2+ toxicity to wheat roots through competition for adsorption sites on the roots, which decreased exchangeable and complexed Cu2+ and Cd2+ on wheat roots. The Ca2+ and Mg2+ were most effective in alleviating heavy metal toxicity and they decreased exchangeable Cu2+ on AK68 roots by 39.14% and 47.82%, and exchangeable Cd2+ by 8.51% and 28.23%, respectively.
Collapse
Affiliation(s)
- Ge Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Chemistry, University of Buea, Buea, PO Box 63, Buea, Cameroon
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jie Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Alotaibi MR, Monier M, Elsayed N. Fabrication and investigation of gold (III) ion-imprinted functionalized silica particles. J Mol Recognit 2019; 33:e2813. [PMID: 31814208 DOI: 10.1002/jmr.2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 11/09/2022]
Abstract
Au (III) ion-imprinted mesoporous silica particles (Au-Si-Py) was manufactured by the condensation reaction of (3-Aminopropyl)triethoxysilane (AT)and 2-pyridinecarboxaldehyde (Py). The obtained AT-Py Schiff base ligand was then coordinate with the template gold ions and the polymerizable gold-complex was allowed to gel in presence of tetraethoxysilane (TEOS) and then the coordinated gold ions were leached out of the obtained silica matrix using acidified thiourea solution. During the synthetic steps, the obtained materials were investigated utilizing advanced instrumental and spectral methods. Moreover, the morphological structure of both Au (III) ions imprinted Au-Si-Py and non-imprinted NI-Si-Py silica particles were visualized using scanning electron microscope (SEM). Various adsorption experiments had been carried out using both Au-Si-Py and NI-Si-Py to examine their potential for selective extraction of gold ions under different conditions.
Collapse
Affiliation(s)
- Majdah R Alotaibi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71421, KSA
| | - Mohammed Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, Yanbu El-Bahr, KSA
| | - NadiaH Elsayed
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo, 12311, Egypt.,Department of Chemistry, University College-Alwajh Tabuk UniversityTabuk, KSA
| |
Collapse
|
12
|
Santos LB, de Oliveira DM, de Souza AO, Lemos VA. A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01665-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chen L, Dai J, Hu B, Wang J, Wu Y, Dai J, Meng M, Li C, Yan Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1596134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jingwen Dai
- Department of Battery Materials, China Aviation Lithium Battery Research Institute Co. Ltd, Changzhou, China
| | - Bo Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jixiang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Chu Y, Gao F, Gao F, Wang Q. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|