1
|
Li Y, Li Y, Jia L, Li Y, Wang Y, Zhang P, Liu X. A simple sensor based on 1-butylpyridinium hexafluorophosphate@glassy carbon microspheres composites for the quantitative analysis of azo dyes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02375-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
2
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
3
|
Si Y, Park YE, Lee JE, Lee HJ. Nanocomposites of poly(l-methionine), carbon nanotube-graphene complexes and Au nanoparticles on screen printed carbon electrodes for electrochemical analyses of dopamine and uric acid in human urine solutions. Analyst 2020; 145:3656-3665. [PMID: 32215393 DOI: 10.1039/c9an02638j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive electrochemical sensor featuring novel composites of gold and carbon nanocomplexes alongside a polymerized amino acid was developed for the determination of uric acid (UA) and dopamine (DA) concentrations in both buffer and human urine sample solutions. The sensor was fabricated by electropolymerization of l-methionine (l-Met) followed by coating of carbon nanotube-graphene complexes and electrodeposition of gold nanoparticles on a screen printed carbon electrode surface. The electrode surfaces were characterized by field emission scanning electron microscopy and energy dispersive spectroscopy, and the electrochemical properties were investigated by cyclic voltammetry and differential pulse voltammetry. Linear ranges of 0.05-3 μM and 1-35 μM with limits of detection of 0.0029 and 0.034 μM were achieved for DA and UA, respectively. In addition, the developed sensor was applied for the analysis of native UA and DA concentrations in undiluted and diluted human urine samples. The UA analysis results were compared to those obtained using high performance liquid chromatography and a fluorometric assay kit while the DA analysis results were compared to those obtained using liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Yunpei Si
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5. Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5. Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| |
Collapse
|
4
|
Báez C, Navarro F, Fuenzalida F, Aguirre MJ, Arévalo MC, Afonso M, García C, Ramírez G, Palenzuela JA. Electrical and Electrochemical Behavior of Carbon Paste Electrodes Modified with Ionic Liquids Based in N-Octylpyridinium Bis(Trifluoromethylsulfonyl)Imide. A Theoretical and Experimental Study. Molecules 2019; 24:E3382. [PMID: 31533331 PMCID: PMC6767309 DOI: 10.3390/molecules24183382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, we studied carbon paste electrodes (CPEs) with two kinds of binders: mineral oil or ionic liquids (IL) derived from N-substituted octyl pyridinium bis(trifluoromethylsulfonyl)imide with the substituents H-, CH3-, CN- and CF3-. The work aims to study this series of IL and determine a possible effect of the substituent of the cation in the behavior of the IL as a binder of graphite for obtaining IL-CPEs. The electrochemical response and the electrical behavior were measured by cyclic voltammetry and electrochemical impedance spectroscopy, respectively. Surprisingly, the substituent does not affect the cyclic voltammetry response because in all the cases, high resistance and high capacitive currents were obtained. The best response in terms of conductivity is obtained by CPE. In the case of impedance measurements, the substituent does not cause differences, and in all the cases, the IL-CPEs show nearly the same responses. CPE shows lower capacitance and higher resistance for diffusion compared to the IL-CPEs due to his lower porosity. The high resistance showed by the IL-CPEs by cyclic voltammetry can be attributed to poorly intermolecular forces among graphite, water, electrolyte, and ILs as demonstrated by theoretical calculations.
Collapse
Affiliation(s)
- Carla Báez
- Departamento de Química de Los Materiales, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Estación Central, Santiago 9170022, Chile.
- NM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, 5110566 Valdivia, Chile.
| | - Freddy Navarro
- Departamento de Química de Los Materiales, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Estación Central, Santiago 9170022, Chile.
| | - Francesca Fuenzalida
- Instituto de Ciencias Naturales, Universidad de Las Américas, Av. 5 de Abril 0620, Maipú, Santiago 9251454, Chile.
| | - María J Aguirre
- Departamento de Química de Los Materiales, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Estación Central, Santiago 9170022, Chile.
| | - M Carmen Arévalo
- Departamento de Química Física, Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38071 La Laguna, Spain.
| | - María Afonso
- Departamento de Química Orgánica, Instituto Universitario de Bio-orgánica Antonio González, Universidad de La Laguna, 38206 La Laguna, Spain.
| | - Camilo García
- Departamento de Ciencias Biológicas y Químicas, Núcleo de Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4781312, Chile.
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile.
| | - J Antonio Palenzuela
- Departamento de Química Orgánica, Instituto Universitario de Bio-orgánica Antonio González, Universidad de La Laguna, 38206 La Laguna, Spain.
| |
Collapse
|