1
|
Fu R, Hai X, Lu Q, Li H, Niu J, Zhang Y, Ren T, Guo X, Di X. Molecularly imprinted polymer gel with superior recognition and adsorption capacity for amphenicol antibiotics in food matrices. Food Chem 2025; 463:141255. [PMID: 39303467 DOI: 10.1016/j.foodchem.2024.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized β-cyclodextrin (β-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and β-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9-9.4) and high adsorption capacity (28.9-75.4 mg g-1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5-10 μg L-1), good correlation (r2 > 0.9967), and respectable recovery (82.6-105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3-104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Collapse
Affiliation(s)
- Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Kurczewska J, Stachowiak M, Cegłowski M. Chitosan-based hydrogel beads with molecularly imprinted receptors on halloysite nanotubes for tetracycline separation in water and soil. ENVIRONMENTAL RESEARCH 2024; 262:119924. [PMID: 39276838 DOI: 10.1016/j.envres.2024.119924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Tetracycline (TC), a commonly utilized broad-spectrum antibiotic, is frequently detected in water and soil, posing a significant risk to the natural environment and human health. In the present study, the composite hydrogel beads based on chitosan (CS) and halloysite-supported molecularly imprinted polymers, synthesized by two procedures with significantly different solvent volumes (Hal@MIPa(b)), were obtained and used to adsorb the antibiotic. The presence of Hal improved the thermal stability of the hydrogel beads. The system with a thinner polymer layer (CS_Hal@MIPb), containing polymers produced under conditions of significantly higher reagent dilution, was more resistant to higher temperatures than CS_Hal@MIPa. The adsorptive properties were compared with pure CS beads, those containing incorporated Hal, and free polymers obtained by different protocols (MIPa(b)). In the optimized pH 5.0, the maximum adsorption capacities were 175.24 and 178.05 mg g-1 for CS_Hal@MIPa and CS_Hal@MIPb, respectively. The values were slightly lower compared to the systems with free polymers, but the materials achieved equilibrium more rapidly (12 h). The adsorption process was spontaneous and exothermic. Freundlich isotherm and pseudo-second-order kinetic models most accurately described the experimental data. The hydrogel beads retained high selectivity in the presence of other antibiotics, and their high efficiency in the TC removal from real water samples was maintained. Their addition to soil enhanced adsorption capacities, surpassing that of chitosan-based beads containing free polymers. Significantly, the quantity of TC desorption diminished due to the halloysite's presence, which limited its penetration into groundwater. The primary mechanism of tetracycline adsorption on the hydrogel beads studied is pore filling, but other interactions (hydrogen bonding, π-π stacking, electrostatic attraction) are also involved.
Collapse
Affiliation(s)
- Joanna Kurczewska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Maria Stachowiak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Michał Cegłowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Falyouna O, Maamoun I, Ghosh S, Malloum A, Othmani A, Eljamal O, Amen TW, Oroke A, Bornman C, Ahmadi S, Hadi Dehghani M, Hossein Mahvi A, Nasseri S, Tyagi I, Suhas, Reddy Koduru J. Sustainable Technologies for the Removal of Chloramphenicol from Pharmaceutical Industries Effluent: A critical review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1929-1963. [PMID: 35369683 PMCID: PMC8956153 DOI: 10.1007/s10311-022-01416-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 05/08/2023]
Abstract
Chloramphenicol is a broad-spectrum bacterial antibiotic used against conjunctivitis, meningitis, plague, cholera, and typhoid fever. As a consequence, chloramphenicol ends up polluting the aquatic environment, wastewater treatment plants, and hospital wastewaters, thus disrupting ecosystems and inducing microbial resistance. Here, we review the occurrence, toxicity, and removal of chloramphenicol with emphasis on adsorption techniques. We present the adsorption performance of adsorbents such as biochar, activated carbon, porous carbon, metal-organic framework, composites, zeolites, minerals, molecularly imprinted polymers, and multi-walled carbon nanotubes. The effect of dose, pH, temperature, initial concentration, and contact time is discussed. Adsorption is controlled by π-π interactions, donor-acceptor interactions, hydrogen bonding, and electrostatic interactions. We also discuss isotherms, kinetics, thermodynamic data, selection of eluents, desorption efficiency, and regeneration of adsorbents. Porous carbon-based adsorbents exhibit excellent adsorption capacities of 500-1240 mg g-1. Most adsorbents can be reused over at least four cycles.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuong Thi Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
5
|
Yu M, Li H, Xie J, Xu Y, Lu X. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 2022; 236:122875. [PMID: 34635255 DOI: 10.1016/j.talanta.2021.122875] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) have aroused great attention as a new material for the removal or detection of pharmaceuticals and personal care products (PPCPs). However, it is not clear about the superiority and deficiency of MIPs in the process of removing or detecting PPCPs. Herein, we evaluated the performance of MIPs in the aspects of adsorption capacity, binding affinity, adsorption rate, and compatibility to other techniques, and proposed ways to improve its performance. Without regard to the selectivity of MIPs, for the PPCPs adsorption, MIPs surprisingly did not always perform better than the conventional adsorbents (non-imprinted polymers, biochar, activated carbon and resin), indicating that MIPs should be used where selectivity is crucial, for example recovery of specific PPCPs in an environmental sample extraction process. Compared to the traditional solid-phase extraction for PPCPs detection pretreatment, the usage of MIPs as substitute extraction agents could obtain high selectivity of specific substance, due to the uniformity and effectiveness of the specific sites. A promising development in the future would be to combine other simple and rapid quantitative technologies, such as electro/photochemical sensor and catalytic degradation, to realize rapid and sensitive detection of trace PPCPs.
Collapse
Affiliation(s)
- Miaomiao Yu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingyi Xie
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Paul Comtois Bldg., Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Chen RN, Kang SH, Li J, Lu LN, Luo XP, Wu L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4538-4556. [PMID: 34570126 DOI: 10.1039/d1ay01014j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular imprinting technology for the preparation of polymers with specific molecular recognition function had become one of the current research hotspots. It has been widely applied in chromatographic separation, antibody and receptor mimetics, solid-phase extraction, bio-sensors, and other fields in the last decades. In this study, molecular imprinting technology was summarized from the points of templates and dummy templates, and four typical target analytes were selected to compare the differences between templates and dummy templates. The current status and prospects of molecular imprinting technology were also proposed.
Collapse
Affiliation(s)
| | | | - Jia Li
- Northwest Minzu University, China.
| | - Li-Na Lu
- Northwest Minzu University, China.
| | | | - Lan Wu
- Northwest Minzu University, China.
| |
Collapse
|
7
|
Omrani N, Nezamzadeh-Ejhieh A. A novel quadripartite Cu2O-CdS-BiVO4-WO3 visible-light driven photocatalyst: Brief characterization and study the kinetic of the photodegradation and mineralization of sulfasalazine. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Caro N, Bruna T, Guerreiro A, Alvarez-Tejos P, Garretón V, Piletsky S, González-Casanova J, Rojas-Gómez D, Ehrenfeld N. Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E306. [PMID: 32053989 PMCID: PMC7075134 DOI: 10.3390/nano10020306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop assays similar to the enzyme-linked immunosorbent (ELISA) assay to determine and quantify florfenicol (FF) in real food samples such as liquid milk and salmon muscle is presented here. The nanoMIPs were synthesized by a solid-phase approach with an immobilized FF (template) and characterized using dynamic light scattering, a SPR-2 biosensor system and transmission electron microscopy. Immobilization of nanoMIPs was conducted by preparing a homogenous solution of FF-nanoMIPs in water mixed with polyvinyl alcohol (PVA) 0.2% (w/v) in each well of a microplate. The detection of florfenicol was achieved in competitive binding experiments with a horseradish peroxidase-florfenicol (FF-HRP) conjugate. The assay made it possible to measure FF in buffer and in real samples (liquid milk and salmon muscle) within the range of 60-80 and 90-100 ng/mL, respectively. The immobilized nanoMIPs were stored for six weeks at room temperature and at 5 °C. The results indicate good signal recovery for all FF concentrations in spiked milk samples, without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA.
Collapse
Affiliation(s)
- Nelson Caro
- Centro de Investigación Austral Biotech, Universidad Santo Tomas, Avenida Ejercito 146, Santiago 7591538, Chile; (N.C.)
| | - Tamara Bruna
- Centro de Investigación Austral Biotech, Universidad Santo Tomas, Avenida Ejercito 146, Santiago 7591538, Chile; (N.C.)
| | - Antonio Guerreiro
- Departament of Chemistry, University of Leincester, Leicester LE1 7RH, UK
| | - Paola Alvarez-Tejos
- Centro de Investigación Austral Biotech, Universidad Santo Tomas, Avenida Ejercito 146, Santiago 7591538, Chile; (N.C.)
| | - Virginia Garretón
- Centro de Investigación Austral Biotech, Universidad Santo Tomas, Avenida Ejercito 146, Santiago 7591538, Chile; (N.C.)
| | - Sergey Piletsky
- Departament of Chemistry, University of Leincester, Leicester LE1 7RH, UK
| | - Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7591538, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 7591538, Chile
| | - Nicole Ehrenfeld
- Centro de Investigación Austral Biotech, Universidad Santo Tomas, Avenida Ejercito 146, Santiago 7591538, Chile; (N.C.)
| |
Collapse
|