1
|
Alexander E, Khalaman VV, Nelly G, Sandrine C, Rogovskaja NY, Krasnov KA, Manoylina PA, Komendantov AY, Emilie LG. Halichondria panicea (Porifera, Demospongiae) Reparative Regeneration: An Integrative Approach to Better Understand Wound Healing. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:214-235. [PMID: 40200856 DOI: 10.1002/jez.b.23295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sponges have a remarkable capacity to rapidly regenerate in response to injury. In addition, sponges rapidly renew their aquiferous system to maintain a healthy. This study describes the reparative regeneration in the cold-water demosponge Halichondria panicea. The wide range of methods allow us to make a comprehensive analysis of mechanisms, which contribute to the regeneration in this species, including morphogenetic process, cell proliferation, apoptosis and cytotoxicity. The regeneration in H. panicea includes three main stages: internal milieu isolation, wound healing - epithelization, and restoration of damaged structures. The main morphogenetical mechanisms of regeneration are epithelial-to-mesenchymal transition during the first 12 h post operation (hpo) followed by blastema formation and mesenchymal-to-epithelial transformation leading to the restoration of damaged structures. These processes can be explained by active cell dedifferentiation and transdifferentiation, participation of resident pluripotent cells (archaeocyte-like cells and choanocytes), by migration of pluripotent cells (archaeocyte-like cells), and by activation of proliferation and apoptosis. The rate of apoptosis becomes homogeneous in regeneration area and in intact tissues at 12 hpo at a significantly higher rate than at 0 hpo. The reduction of sponge toxicity at 6 hpo looks like a necessary step for activation of repair processes. However, after 24 hpo, the toxicity exceeded the initial (0 hpo) level. At 96 hpo, the aquiferous system is completely restored. The ability for rapid wound epithelialization, as well as the morphological and functional restoration of damaged tissues, can be considered as a form of sponge's adaptation to extreme conditions in cold shallow water, acquired in the course of evolution.
Collapse
Affiliation(s)
- Ereskovsky Alexander
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russia
| | | | - Godefroy Nelly
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Chenesseau Sandrine
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
| | - Nadezhda Yu Rogovskaja
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | - Konstantin A Krasnov
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | | | | | - Le Goff Emilie
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Barutia I, Sombke A. Explosive regeneration and anamorphic development of legs in the house centipede Scutigera coleoptrata. Front Zool 2024; 21:23. [PMID: 39294713 PMCID: PMC11412016 DOI: 10.1186/s12983-024-00544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Regenerating legs is advantageous for arthropods as their appendages exhibit crucial functional specializations. Many arthropods possess a 'preferred breakage point', where the appendage is most likely to break and where regeneration likely to occur, however, different taxa exhibit different levels of regenerative potential. Centipede appendage regeneration is categorized as 'progressive' or 'explosive'. In the later, the appendage is fully regenerated after one molt. This term was used for house centipedes that frequently lose their long legs. We chose Scutigera coleoptrata as a model to comprehensively investigate the process of leg appendotomy and regeneration as well as compare it with leg development in anamorphic instars. RESULTS The trochanter exhibits a preferred breakage point. Internally, it houses a three-layered diaphragm that effectively seals the lumen. In case of leg loss, the wound is quickly sealed. The epidermis detaches from the cuticle and muscles of the coxa get compacted, giving sufficient space for the regenerating leg. A blastema forms and the leg then grows in a coiled manner. The regenerating leg is innervated and syncytial muscles form. If the leg is lost in an early intermolt phase, progression of regeneration is slower than when a specimen is closer to the next molt. Instars of house centipedes can simultaneously develop and regenerate legs. The legs develop laterally on the posterior segments under the cuticle. As opposed to regeneration, the progression of leg development always follows the same temporal pattern throughout the entire intermolt phase. CONCLUSION Several factors are of major significance in house centipede leg regeneration. First, the ease with which they lose legs: the diaphragm represents an efficient tool for appendotomy. Moreover, the functional extension of the coxa provides space for a leg to be regenerated in. Lastly, the genetic predisposition allows them to regenerate legs within one molting cycle. This "package" is unique among land arthropods, and to this degree rare in marine taxa. Furthermore, observing leg regeneration and anamorphic leg development in parallel suggest that regeneration is most likely an epiphenomenon of development, and the differences are a requirement for the novel context in which re-development occurs.
Collapse
Affiliation(s)
- Iulia Barutia
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Institute for Zoology and Evolutionary Research, Animal Physiology, Friedrich-Schiller-University Jena, Erbertstrasse 1, 07743, Jena, Germany.
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| | - Andy Sombke
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Jobson S, Hamel JF, Mercier A. Shake it off: exploring drivers and outcomes of autotomy in marine invertebrates. Biol Lett 2024; 20:20240015. [PMID: 38807548 PMCID: PMC11285939 DOI: 10.1098/rsbl.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Autotomy refers to self-amputation where the loss of a limb or organ is generally said to be (1) in response to stressful external stimuli; (2) voluntary and nervously mediated; (3) supported by adaptive features that increase efficiency and simultaneously mediate the cost; and (4) morphologically delineated by a predictable breakage plane. It is estimated that this phenomenon has evolved independently nine different times across the animal kingdom, appearing in many different taxa, including vertebrate and invertebrate as well as aquatic and terrestrial animals. Marine invertebrates use this behaviour in a diversity of manners that have yet to be globally reviewed and critically examined. Here, published data from marine invertebrate taxa were used to explore instances of injury as an evolutionary driver of autotomy. Findings suggest that phyla (e.g. Echinodermata and Arthropoda) possibly experiencing high rates of injury (tissue damage or loss) are more likely to be able to perform autotomy. Additionally, this review looks at various morphological, physiological and environmental conditions that have either driven the evolution or maintained the behaviour of autotomy in marine invertebrates. Finally, the use of autotomic abilities in the development of more sustainable and less ecologically invasive fisheries is explored.
Collapse
Affiliation(s)
- Sara Jobson
- Department of Ocean Sciences, Memorial University, St John’s (Newfoundland and Labrador), Canada
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment, St Philips (Newfoundland and Labrador), Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St John’s (Newfoundland and Labrador), Canada
| |
Collapse
|
4
|
Ren C, Wen Y, Zheng S, Zhao Z, Li EY, Zhao C, Liao M, Li L, Zhang X, Liu S, Yuan D, Luo K, Wang W, Fei J, Li S. Two transcriptional cascades orchestrate cockroach leg regeneration. Cell Rep 2024; 43:113889. [PMID: 38416646 DOI: 10.1016/j.celrep.2024.113889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The mystery of appendage regeneration has fascinated humans for centuries, while the underlying regulatory mechanisms remain unclear. In this study, we establish a transcriptional landscape of regenerating leg in the American cockroach, Periplaneta americana, an ideal model in appendage regeneration studies showing remarkable regeneration capacity. Through a large-scale in vivo screening, we identify multiple signaling pathways and transcription factors controlling leg regeneration. Specifically, zfh-2 and bowl contribute to blastema cell proliferation and morphogenesis in two transcriptional cascades: bone morphogenetic protein (BMP)/JAK-STAT-zfh-2-B-H2 and Notch-drm/bowl-bab1. Notably, we find zfh-2 is working as a direct target of BMP signaling to promote cell proliferation in the blastema. These mechanisms might be conserved in the appendage regeneration of vertebrates from an evolutionary perspective. Overall, our findings reveal that two crucial transcriptional cascades orchestrate distinct cockroach leg regeneration processes, significantly advancing the comprehension of molecular mechanism in appendage regeneration.
Collapse
Affiliation(s)
- Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shaojuan Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ethan Yihao Li
- International Department, the Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Chenjing Zhao
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
5
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Regeneration in calcareous sponge relies on 'purse-string' mechanism and the rearrangements of actin cytoskeleton. Cell Tissue Res 2023; 394:107-129. [PMID: 37466725 DOI: 10.1007/s00441-023-03810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The crucial step in any regeneration process is epithelization, i.e. the restoration of an epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the formation of a temporary structure, called regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| |
Collapse
|
6
|
Xu J, Mead O, Moya A, Caglar C, Miller DJ, Adamski M, Adamska M. Wound healing and regeneration in the reef building coral Acropora millepora. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.979278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Branching scleractinian corals are niche-constructing organisms, providing continuously-growing, structural foundation for spectacularly biodiverse coral reef ecosystems. A large part of their success lies in the ability to quickly regenerate following mechanical damage. Even now, when the corals undergo great decline due to anthropogenic weather and storm extremes, it is surprising how little is known about molecular mechanisms governing regeneration in these iconic organisms. In this study, we used RNA-seq to identify genes involved in the regeneration of Acropora millepora, starting with the initial wound closure up to complete rebuilding of lost structures. Many of the differentially expressed genes we found in the wound healing steps are homologues of genes known to be involved in wound healing and regeneration of bilaterian and other cnidarian species, prominently including multiple components of FGF and Wnt signalling pathways. Comparison between genes involved in wound healing and continuous growth of the colony demonstrates both similarity and distinctiveness of the genetic programmes controlling these processes. A striking example is specific expression of c-Fos, a transcription factor with conserved role in early injury response, during the earliest stages of wound healing of A. millepora. By comparing results obtained in diverse experimental conditions including a closed-loop, recirculating aquarium and a flow-through system of marine station, we have demonstrated feasibility of using zooxanthellate scleractinian corals as experimental models in fundamental biology research, including studies of regeneration.
Collapse
|
7
|
Riesgo A, Santodomingo N, Koutsouveli V, Kumala L, Leger MM, Leys SP, Funch P. Molecular machineries of ciliogenesis, cell survival, and vasculogenesis are differentially expressed during regeneration in explants of the demosponge Halichondria panicea. BMC Genomics 2022; 23:858. [PMID: 36581804 PMCID: PMC9798719 DOI: 10.1186/s12864-022-09035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/21/2022] [Indexed: 12/30/2022] Open
Abstract
Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species. Here, we have used an explant system of the demosponge Halichondria panicea to understand the molecular machinery deployed during regeneration of the aquiferous system. We sequenced the transcriptomes of four replicates of the 5-day explant without an osculum (NOE), four replicates of the 17-18-day explant with a single osculum and pumping activity (PE) and also four replicates of field-collected individuals with regular pumping activity (PA), and performed differential gene expression analysis. We also described the morphology of NOE and PE samples using light and electron microscopy. Our results showed a highly disorganised mesohyl and disarranged aquiferous system in NOE that is coupled with upregulated pathways of ciliogenesis, organisation of the ECM, and cell proliferation and survival. Once the osculum is formed, genes involved in "response to stimulus in other organisms" were upregulated. Interestingly, the main molecular machinery of vasculogenesis described in vertebrates was activated during the regeneration of the aquiferous system. Notably, vasculogenesis markers were upregulated when the tissue was disorganised and about to start forming canals (NOE) and angiogenic stimulators and ECM remodelling machineries were differentially expressed once the aquiferous system was in place (PE and PA). Our results are fundamental to better understanding the molecular mechanisms involved in the formation of the aquiferous system in sponges, and its similarities with the early onset of blood-vessel formation in animal evolution.
Collapse
Affiliation(s)
- Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK.
| | - Nadia Santodomingo
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK
| | - Vasiliki Koutsouveli
- Marine Symbioses Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Lars Kumala
- Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300, Kerteminde, Denmark
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-UPF), Paseo Marítimo de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2R3, Canada
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade, 114-116, Aarhus C, Denmark
| |
Collapse
|
8
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
9
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
10
|
Khaire K, Verma U, Buch P, Patel S, Ranadive I, Balakrishnan S. Site-specific variation in the activity of COX-2 alters the pattern of wound healing in the tail and limb of northern house gecko by differentially regulating the expression of local inflammatory mediators. ZOOLOGY 2021; 148:125947. [PMID: 34333369 DOI: 10.1016/j.zool.2021.125947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/29/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The role of COX-2 induced PGE2 in the site-specific regulation of inflammatory mediators that facilitate disparate wound healing in the tail and limb of a lizard was studied by analysing their levels during various stages of healing. The activity of COX-2 and concentration of PGE2 surged during the early healing phase of tail along with the parallel rise in EP4 receptor. PGE2-EP4 interaction is corelated to early resolution (by 3 dpa) of inflammation by rising the antiinflammatory mediator IL-10. This likely causes reduction in proinflammatory mediators viz., iNOS, TNF-α, IL-6, IL-17 and IL-22. Conversely, in the limb, COX-2 derived PGE2 likely causes rise in inflammation through EP2 receptor-based signalling, as all the proinflammatory mediators stay elevated through the course of healing (till 9 dpa), while expression of IL-10 is reduced. This study brings to light the novel roles of IL-17 and IL-22 in programming wound healing. As IL-17 reduces in tail, IL-22 behaves in reparative way, causing conducive environment for scar-free wound healing. On the contrary, synergic elevation of both IL-17 and Il-22 form a micro-niche suitable for scarred wound healing in limb, thus obliterating its regenerative potential.
Collapse
Affiliation(s)
- Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Pranav Buch
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India.
| |
Collapse
|
11
|
Hayden LD, Poss KD, De Simone A, Di Talia S. Mathematical modeling of Erk activity waves in regenerating zebrafish scales. Biophys J 2021; 120:4287-4297. [PMID: 34022234 DOI: 10.1016/j.bpj.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022] Open
Abstract
Erk signaling regulates cellular decisions in many biological contexts. Recently, we have reported a series of Erk activity traveling waves that coordinate regeneration of osteoblast tissue in zebrafish scales. These waves originate from a central source region, propagate as expanding rings, and impart cell growth, thus controlling tissue morphogenesis. Here, we present a minimal reaction-diffusion model for Erk activity waves. The model considers three components: Erk, a diffusible Erk activator, and an Erk inhibitor. Erk stimulates both its activator and inhibitor, forming a positive and negative feedback loop, respectively. Our model shows that this system can be excitable and propagate Erk activity waves. Waves originate from a pulsatile source that is modeled by adding a localized basal production of the activator, which turns the source region from an excitable to an oscillatory state. As Erk activity periodically rises in the source, it can trigger an excitable wave that travels across the entire tissue. Analysis of the model finds that positive feedback controls the properties of the traveling wavefront and that negative feedback controls the duration of Erk activity peak and the period of Erk activity waves. The geometrical properties of the waves facilitate constraints on the effective diffusivity of the activator, indicating that waves are an efficient mechanism to transfer growth factor signaling rapidly across a large tissue.
Collapse
Affiliation(s)
- Luke D Hayden
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Alessandro De Simone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
12
|
Vullien A, Röttinger É, Vervoort M, Gazave E. [A trio of mechanisms involved in regeneration initiation in animals]. Med Sci (Paris) 2021; 37:349-358. [PMID: 33908852 DOI: 10.1051/medsci/2021037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whole-body and complex structure regeneration is a widespread phenomenon in animals. While regenerative abilities vary greatly from one species to another, a number of mechanisms appear essential for regeneration in distantly related phylogenetic groups. In this review, we synthetize the knowledge gathered on the implication of three mechanisms that appear to be important for the initiation of regeneration in animals. Reactive Oxygen Species (ROS) are metabolic by-products involved in cell signalling, which are produced shortly after amputation in several species. ROS production may be responsible for triggering apoptosis, another recurring mechanism involved in regeneration initiation. In turn, apoptosis causes compensatory proliferation by setting off cellular division, thus contributing to the reconstitution of tissues. Inhibiting either ROS production, apoptosis or cellular proliferation impairs regeneration in a variety of model species.
Collapse
Affiliation(s)
- Aurore Vullien
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France - Université Côte d'Azur, CNRS, Inserm, IRCAN (Institute for Research on Cancer and Aging), 28 avenue de Valombrose, Nice, France
| | - Éric Röttinger
- Université Côte d'Azur, CNRS, Inserm, IRCAN (Institute for Research on Cancer and Aging), 28 avenue de Valombrose, Nice, France - Université Côte d'Azur, Institut fédératif de recherche - Ressources marines, Nice, France
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| |
Collapse
|
13
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
14
|
Rodriguez AM, Kang J. Regeneration enhancers: Starting a journey to unravel regulatory events in tissue regeneration. Semin Cell Dev Biol 2020; 97:47-54. [PMID: 30953740 PMCID: PMC6783330 DOI: 10.1016/j.semcdb.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Regeneration, an ability to replace lost body parts, is widespread across animal species. While mammals poorly regenerate most tissues, teleost fish and urodele amphibians possess remarkable regenerative capacity. Earlier work demonstrated that genes driving regeneration are evolutionarily conserved, indicating that a key factor in diverse tissue regeneration is not the presence or absence of regeneration-driving genes but the mechanisms controlling activation of these genes after injury. Thus, understanding the regulatory events of tissue regeneration could provide the means for unlocking latent capacities for tissue regeneration. After injury, cells undergo extensive epigenetic changes to establish new transcriptional programs for tissue regeneration. Gene transcription in eukaryotes is a complicated process that requires specific interactions between trans-acting regulators and cis-regulatory DNA elements. Among cis-regulatory elements, enhancers are essential to control precise gene expression. Recently, multiple regeneration/injury-associated enhancers have been identified in several model organisms. In this review, we highlight recently discovered regeneration/injury enhancers and their specific characteristics. We also discuss how abnormal regulation of regeneration enhancers influences animal development and physiology. Investigation of regeneration enhancers potentially allows us to begin understanding the fundamental biology of tissue regeneration and inspires new solutions for manipulating regenerative ability.
Collapse
Affiliation(s)
- Anjelica M Rodriguez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Pozzolini M, Gallus L, Ghignone S, Ferrando S, Candiani S, Bozzo M, Bertolino M, Costa G, Bavestrello G, Scarfì S. Insights into the evolution of metazoan regenerative mechanisms: roles of TGF superfamily members in tissue regeneration of the marine sponge Chondrosia reniformis. J Exp Biol 2019; 222:jeb207894. [PMID: 31371401 DOI: 10.1242/jeb.207894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 01/31/2023]
Abstract
Tissue repair is an adaptive and widespread metazoan response. It is characterised by different cellular mechanisms and complex signalling networks that involve numerous growth factors and cytokines. In higher animals, transforming growth factor-β (TGF-β) signalling plays a fundamental role in wound healing. In order to evaluate the involvement of TGF superfamily members in lower invertebrate tissue regeneration, sequences for putative TGF ligands and receptors were isolated from the transcriptome of the marine sponge Chondrosia reniformis We identified seven transcripts that coded for TGF superfamily ligands and three for TGF superfamily receptors. Phylogenetically, C. reniformis TGF ligands were not grouped into any TGF superfamily clades and thus presumably evolved independently, whereas the TGF receptors clustered in the Type I receptor group. We performed gene expression profiling of these transcripts in sponge regenerating tissue explants. Data showed that three ligands (TGF1, TGF3 and TGF6) were mainly expressed during early regeneration and seemed to be involved in stem cell maintenance, whereas two others (TGF4 and TGF5) were strongly upregulated during late regeneration and thus were considered pro-differentiating factors. The presence of a strong TGF inhibitor, SB431542, blocked the restoration of the exopinacoderm layer in the sponge explants, confirming the functional involvement of the TGF pathway in tissue regeneration in these early evolved animals.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-Turin Unit (CNR), Viale Mattioli 25, 10125 Torino, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Gabriele Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Giorgio Bavestrello
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| |
Collapse
|
16
|
Kenny NJ, de Goeij JM, de Bakker DM, Whalen CG, Berezikov E, Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Mar Genomics 2018; 37:135-147. [DOI: 10.1016/j.margen.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
|
17
|
Borisenko IE, Adamska M, Tokina DB, Ereskovsky AV. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 2015; 3:e1211. [PMID: 26336645 PMCID: PMC4556153 DOI: 10.7717/peerj.1211] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
The ability to regenerate is widespread in the animal kingdom, but the regenerative capacities and mechanisms vary widely. To understand the evolutionary history of the diverse regeneration mechanisms, the regeneration processes must be studied in early-evolved metazoans in addition to the traditional bilaterian and cnidarian models. For this purpose, we have combined several microscopy techniques to study mechanisms of regeneration in the demosponge Halisarca dujardini. The objectives of this work are to detect the cells and morphogenetic processes involved in Halisarca regeneration. We show that in Halisarca there are three main sources of the new exopinacoderm during regeneration: choanocytes, archaeocytes and (rarely) endopinacocytes. Here we show that epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) occur during Halisarca regeneration. EMT is the principal mechanism during the first stages of regeneration, soon after the injury. Epithelial cells from damaged and adjacent intact choanocyte chambers and aquiferous canals assume mesenchymal phenotype and migrate into the mesohyl. Together with archaeocytes, these cells form an undifferentiated cell mass beneath of wound, which we refer to as a blastema. After the blastema is formed, MET becomes the principal mechanism of regeneration. Altogether, we demonstrate that regeneration in demosponges involves a variety of processes utilized during regeneration in other animals (e.g., cell migration, dedifferentiation, blastema formation) and points to the particular importance of transdifferentiation in this process. Further studies will be needed to uncover the molecular mechanisms governing regeneration in sponges.
Collapse
Affiliation(s)
- Ilya E. Borisenko
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Current affiliation: Research School of Biology, Australian National University, Canberra, Australia
| | - Daria B. Tokina
- Current affiliation: Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
| | - Alexander V. Ereskovsky
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Current affiliation: Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
| |
Collapse
|
18
|
Ereskovsky AV, Borisenko IE, Lapébie P, Gazave E, Tokina DB, Borchiellini C. Oscarella lobularis (Homoscleromorpha, Porifera) Regeneration: Epithelial Morphogenesis and Metaplasia. PLoS One 2015; 10:e0134566. [PMID: 26270639 PMCID: PMC4536211 DOI: 10.1371/journal.pone.0134566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/12/2015] [Indexed: 02/01/2023] Open
Abstract
Sponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges. In this work we reveal the underlying cellular mechanisms used during morphogenesis accompanying ectosome regeneration in the homoscleromorph sponge model: Oscarella lobularis. We identified three main sources of novel exopinacoderm during the processes of its regeneration and the restoration of functional peripheral parts of the aquiferous system in O. lobularis: (1) intact exopinacoderm surrounding the wound surface, (2) the endopinacoderm from peripheral exhalant and inhalant canals, and (3) the intact choanoderm found on the wound surface. The basic morphogenetic processes during regeneration are the spreading and fusion of epithelial sheets that merge into one continuous epithelium. Transdifferentiation of choanocytes into exopinacocytes is also present. Epithelial-mesenchymal transition is absent during regeneration. Moreover, we cannot reveal any other morphologically distinct pluripotent cells. In Oscarella, neither blastema formation nor local dedifferentiation and proliferation have been detected, which is probably due to the high morphogenetic plasticity of the tissue. Regeneration in O. lobularis goes through cell transdifferentiation and through the processes, when lost body parts are replaced by the remodeling of the remaining tissue. Morphogenesis during ectosome regeneration in O. lobularis is correlated with its true epithelial organization. Knowledge of the morphological basis of morphogenesis during Oscarella regeneration could have important implications for our understanding of the diversity and evolution of regeneration mechanisms in metazoans, and is a strong basis for future investigations with molecular-biological approaches.
Collapse
Affiliation(s)
- Alexander V. Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Marseille, France
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Ilya E. Borisenko
- Department of Embryology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche sur mer UMR7009 CNRS/UPMC Observatoire Océanologique Quai de la Darse, Villefranche-sur-Mer, France
| | - Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Daria B. Tokina
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Marseille, France
| | - Carole Borchiellini
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Marseille, France
| |
Collapse
|
19
|
|
20
|
|