1
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. HGG ADVANCES 2025; 6:100354. [PMID: 39318092 PMCID: PMC11525221 DOI: 10.1016/j.xhgg.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Rutgers New Jersey School of Medicine, 185 S Orange Ave, Newark, NJ 07103, USA; Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille University, INSERM, MMG, U 1251 Marseille, France; Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | - Katherine G Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Ionis Pharmaceuticals, Carlsbad CA, USA
| | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Research Center for Genetic Medicine, Children's National Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304535. [PMID: 38585796 PMCID: PMC10996755 DOI: 10.1101/2024.03.25.24304535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Rutgers New Jersey School of Medicine, 185 S Orange Ave Newark NJ 07103 USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children’s Hospital, APHM, Marseille, France
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Biogen, Boston MA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Research Center for Genetic Medicine, Children’s National Research Institute, Children’s National Medical Center, Washington DC 20010
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St. Cambridge MA 02142
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Haidong L, Yin L, Ping C, Xianzhao Z, Qi Q, Xiaoli M, Zheng L, Wenhao C, Yaguang Z, Qianqian Q. Clinico-pathological and gene features of 15 nemaline myopathy patients from a single Chinese neuromuscular center. Acta Neurol Belg 2024; 124:91-99. [PMID: 37525074 PMCID: PMC10874337 DOI: 10.1007/s13760-023-02333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Nemaline myopathy, the most common of the congenital myopathies, is caused by various genetic mutations. In this study, we attempted to investigate the clinical features, muscle pathology and genetic features of 15 patients with nemaline myopathy. RESULTS Among the 15 patients, there were 9 (60.00%) males and 6 (40.00%) females, and 9 (60.00%) of them came from three families respectively. The age of seeing a doctor ranged from 9 to 52 years old, the age of onset was from 5 to 23 years old, and the duration of disease ranged from 3 to 35 years. Ten out of the 15 patients had high arched palate and elongated face. Only one patient had mild respiratory muscle involvement and none had dysphagia. Muscle biopsies were performed in 9 out of the 15 patients. Pathologically, muscle fibers of different sizes, atrophic muscle fibers and compensatory hypertrophic fibers could be found, and occasionally degenerated and necrotic muscle fibers were observed. Different degrees of nemaline bodies aggregation could be seen in all 9 patients. The distribution of type I and type II muscle fibers were significantly abnormal in patients with nemaline myopathy caused by NEB gene, however, it was basically normal in patients with nemaline myopathy caused by TPM3 gene and ACTA1 gene. Electron microscopic analysis of 6 patients showed that nemaline bodies aggregated between myofibrils were found in 5(83.33%) cases, and most of them were located near the Z band, but no intranuclear rods were found. The gene analysis of 15 NM patients showed that three NM-related genes were harbored, including 11 (73.33%) patients with NEB, 3 (20.00%) patients with TPM3, and 1 (6.67%) patient with ACTA1, respectively. A total of 12 mutation sites were identified and included 10 (83.33%) mutations in exon and 2(16.67%) mutations in intron. CONCLUSIONS The clinical phenotype of nemaline myopathy is highly heterogeneous. Muscle pathology shows that nemaline bodies aggregation is an important feature for the diagnosis of NM. NEB is the most frequent causative gene in this cohort. The splicing mutation, c.21522 + 3A > G may be the hotspot mutation of the NEB gene in Chinese NM patients.
Collapse
Affiliation(s)
- Lv Haidong
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Liu Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Chen Ping
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zheng Xianzhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qian Qi
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Ma Xiaoli
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Lv Zheng
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Cui Wenhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zhou Yaguang
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qu Qianqian
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Skrypnyk C, Husain AA, Hassan HY, Ahmed J, Darwish A, Almusalam L, Ben Khalaf N, Al Qashar F. Case report: Homozygous variants of NEB and KLHL40 in two Arab patients with nemaline myopathy. Front Genet 2023; 14:1098102. [PMID: 37025449 PMCID: PMC10070974 DOI: 10.3389/fgene.2023.1098102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: Nemaline myopathies are a heterogeneous group of congenital myopathies caused by mutations in different genes associated with the structural and functional proteins of thin muscular filaments. Most patients have congenital onset characterized by hypotonia, respiratory issues, and abnormal deep tendon reflexes, which is a phenotype encountered in a wide spectrum of neuromuscular disorders. Whole-exome sequencing (WES) contributes to a faster diagnosis and facilitates genetic counseling. Methods: Here, we report on two Arab patients from consanguineous families diagnosed with nemaline myopathy of different phenotype spectrum severities. Results: Clinical assessment and particular prenatal history raised suspicion of neuromuscular disease. WES identified homozygous variants in NEB and KLHL40. Muscle biopsy and muscle magnetic resonance imaging studies linked the genetic testing results to the clinical phenotype. The novel variant in the NEB gene resulted in a classical type 2 nemaline myopathy, while the KLHL40 gene variant led to a severe phenotype of nemaline myopathy, type 8. Both patients were identified as having other gene variants with uncertain roles in their complex phenotypes. Conclusions: This study enriches the phenotypic spectrum of nemaline myopathy caused by NEB and KLHL40 variants and highlights the importance of detailed prenatal, neonatal, and infancy assessments of muscular weakness associated with complex systemic features. Variants of uncertain significance in genes associated with nemaline myopathy may be correlated with the phenotype. Early, multidisciplinary intervention can improve the outcome in patients with mild forms of nemaline myopathies. WES is essential for clarifying complex clinical phenotypes encountered in patients from consanguineous families. Targeted carrier screening of extended family members would enable accurate genetic counseling and potential genetic prevention.
Collapse
Affiliation(s)
- Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Bahrain
- Department of Medical Genetics, University Medical Center, King Abdulla Medical City, Manama, Bahrain
- *Correspondence: Cristina Skrypnyk,
| | - Aseel Ahmed Husain
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Hisham Y. Hassan
- Banoon ART and Cytogenetics Centre, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Jameel Ahmed
- Radiology Department, University Medical Center, King Abdulla Medical City, Manama, Bahrain
| | - Abdulla Darwish
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Latifa Almusalam
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Noureddine Ben Khalaf
- Life Sciences Department, Health Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Fahad Al Qashar
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| |
Collapse
|
5
|
Wang Q, Hu Z, Chang X, Yu M, Xie Z, Lv H, Zhang W, Xiong H, Yuan Y, Wang Z. Mutational and clinical spectrum in a cohort of Chinese patients with hereditary nemaline myopathy. Clin Genet 2020; 97:878-889. [PMID: 32222963 DOI: 10.1111/cge.13745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Hereditary nemaline myopathy (NM) is one of the most common congenital myopathies with the histopathological findings of nemaline bodies. We used targeted next-generation sequencing to identify causative mutations in 48 NM patients with confirmed myopathological diagnosis, analyze the mutational spectrum and phenotypic features. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was used to confirm the pathogenic effect of one nebulin (NEB) splicing variant. The results showed that variants were found in five NM-associated genes, including NEB, actin alpha 1 (ACTA1), troponin T1, Kelch repeat and BTB domain-containing 13, and cofilin-2, in 34 (73.9%), 7 (15.2%), 3 (6.5%), 1 (2.2%), and 1 (2.2%) patients, respectively, in a total of 46/48 (95.8%) NM patients. Of the total 64 variants identified, 51 were novel variants including 26 pathogenic, 1 probably pathogenic, and 24 variant of uncertain significance (VUS). Notably, one NEB splicing mutation, c.21417+3A>G causing exon 144 splicing (NM_001164508.1), as confirmed by RT-PCR, was found in 52.9% (18 patients) of NEB variant-carrying patients. Typical congenital NM, the most common clinical subtype (60.4%), was associated with five NM genes. We concluded that hereditary NM showed a highly variable genetic spectrum. NEB was the most frequent causative gene in this Chinese cohort, followed by ACTA1. We found a hotspot splicing mutation in NEB among Chinese cohort.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhenxian Hu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|