1
|
Mehrholz J, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2025; 5:CD006185. [PMID: 40365867 PMCID: PMC12076539 DOI: 10.1002/14651858.cd006185.pub6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
RATIONALE Walking difficulties are common after a stroke. During rehabilitation, electromechanical and robotic gait-training devices can help improve walking. As the evidence and certainty of the evidence may have changed since our last update in 2020, we aimed to update the scientific evidence on the benefits and acceptability of these technologies to ensure they remain a viable option for stroke rehabilitation. OBJECTIVES Primary • To determine whether electromechanical- and robot-assisted gait training versus physiotherapy (or usual care) improves walking in adults after stroke. Secondary • To determine whether electromechanical- and robot-assisted gait training versus physiotherapy (or usual care) after stroke improves walking velocity, walking capacity, acceptability, and death from all causes until the end of the intervention phase. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and seven other databases. We handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trial authors to identify further published, unpublished, and ongoing trials. The date of the latest search was December 2023. ELIGIBILITY CRITERIA We included all randomised controlled trials and randomised controlled cross-over trials in people over the age of 18 years diagnosed with stroke of any severity, at any stage, in any setting, evaluating electromechanical- and robot-assisted gait training versus physiotherapy (or usual care). OUTCOMES Our critical outcome was the ability to walk independently, measured with the Functional Ambulation Category (FAC). An FAC score of 4 or 5 indicated independent walking over a 15-metre surface, irrespective of aids used, such as a cane. An FAC score less than 4 indicates dependency in walking (supervision or assistance, or both, must be given in performing walking). Important outcomes included walking velocity and capacity, as well as dropouts. RISK OF BIAS We used Cochrane's RoB 1 tool. SYNTHESIS METHODS Two review authors independently selected trials for inclusion, assessed methodological quality and risk of bias, and extracted data. We used random-effects models for the meta-analysis. We assessed the certainty of evidence using the GRADE approach. INCLUDED STUDIES We included 101 studies (39 new studies plus 62 studies from previous versions) with a total of 4224 participants after stroke in our review update. SYNTHESIS OF RESULTS Electromechanical-assisted gait training in combination with physiotherapy probably increases the odds of participants becoming independent in walking (odds ratio (OR) 1.65, 95% confidence interval (CI) 1.21 to 2.25; P = 0.001; I² = 31%; 51 studies, 2148 participants; moderate-certainty evidence); probably does not increase mean walking velocity (mean difference (MD) 0.05 m/s, 95% CI 0.02 to 0.08; P < 0.001; I² = 58%; 73 studies, 3043 participants; moderate-certainty evidence); and does not increase mean walking capacity (MD 11 metres walked in 6 minutes, 95% CI 1.8 to 20.3; P = 0.02; I² = 43%; 42 studies, 1966 participants; high-certainty evidence). Electromechanical-assisted gait training does not increase or decrease the risk of loss to the study during the intervention or the risk of death from all causes (high-certainty evidence). At follow-up after study end, electromechanical-assisted gait training in combination with physiotherapy may not increase the odds of participants becoming independent in walking (OR 1.64, 95% CI 0.77 to 3.48; P = 0.20; I² = 69%; 8 studies, 569 participants; low-certainty evidence), and probably does not increase mean walking velocity (MD 0.05 m/s, 95% CI -0.03 to 0.13; P = 0.22; I² = 66%; 17 studies, 857 participants; moderate-certainty evidence) or mean walking capacity (MD 9.6 metres walked in 6 minutes, 95% CI -14.6 to 33.7; P = 0.44; I² = 53%; 15 studies, 736 participants; moderate-certainty evidence). Our results must be interpreted with caution because (1) some trials investigated people who were independent in walking at the start of the study; and (2) there was variation between trials with respect to the devices used and duration and frequency of treatment. AUTHORS' CONCLUSIONS Moderate-certainty evidence shows that people who receive electromechanical-assisted gait training in combination with physiotherapy after stroke are probably more likely to achieve independent walking than people who receive gait training without these devices.We concluded that nine patients need to be treated to prevent one dependency in walking. Further research should consist of large, definitive pragmatic phase 3 trials undertaken to address specific questions about the most effective frequency and duration of electromechanical-assisted gait training, as well as how long any benefit may last. Future trials should consider time poststroke in their trial design. FUNDING This Cochrane review had no dedicated funding. REGISTRATION Protocol (2006): doi:10.1002/14651858.CD006185 Original review (2007): doi:10.1002/14651858.CD006185.pub2 Review update (2013): doi:10.1002/14651858.CD006185.pub3 Review update (2017): doi:10.1002/14651858.CD006185.pub4 Review update (2020): doi:10.1002/14651858.CD006185.pub5.
Collapse
Affiliation(s)
- Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | - Marcus Pohl
- Clinic for Neurological-Neurosurgical Rehabilitation, Vamed Klinik Schloss Pulsnitz, Pulsnitz, Germany
| | - Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
- Institut für Gesundheitswissenschaften, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Fan T, Zheng P, Zhang X, Gong Z, Shi Y, Wei M, Zhou J, He L, Li S, Zeng Q, Lu P, Zhao Y, Zou J, Chen R, Peng Z, Xu C, Cao P, Huang G. Effects of exoskeleton rehabilitation robot training on neuroplasticity and lower limb motor function in patients with stroke. BMC Neurol 2025; 25:193. [PMID: 40319228 PMCID: PMC12049012 DOI: 10.1186/s12883-025-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Lower limb exoskeleton rehabilitation robot is a new technology to improve the lower limb motor function of stroke patients. Recovery of motor function after stroke is closely related to neuroplasticity in the motor cortex and associated motor areas. However, few studies investigate how rehabilitation robots affect the neuroplasticity of stroke patients.This study sought to determine the effects of lower limb exoskeleton robot walking training on neuroplasticity and lower limb motor function in patients with stroke. METHODS A total of 25 (50.26 ± 11.42 years, 68.0% male) patients(age 18-75 years, onset between 2 weeks and 6 months) with a stable condition after having a stroke were randomized into a treatment (n = 13) and control group (n = 12). Bilateral Exoskeletal Assistive Robot H1 (BEAR-H1) walking training was provided to the treatment group, whereas conventional walking training was provided to the control group. Both groups completed two training sessions per day for 30 min each and were trained 5 days a week for 4 weeks. Transcranial magnetic stimulation, Fugl-Meyer Assessment lower extremity, Functional Ambulation Category 6-min walking distance test, intelligent gait analysis, and surface electromyography of the lower limbs were performed before and 4 weeks after treatment. RESULTS Both groups showed obvious improvements in all evaluation indicators (p < 0.05). Compared with the control group, the treatment group exhibited a decreased resting motor threshold and increased motor-evoked potential amplitude and recruitment curve slope (p < 0.05). The treatment group performed better than the control group (p < 0.05) in the 6-min walk test and knee flexion co-contraction ratio (CR). Correlation analysis showed that resting motor threshold, motor-evoked potential amplitude, and the recruitment curve slope were significantly correlated with the 6-min walk test, CR on ankle dorsiflexion, the root mean square of the tibialis anterior, biceps femoris, and medial gastrocnemius (p < 0.05). CONCLUSION Walking training using the bilateral exoskeletal assistive robot H1 improved cerebral cortical excitability in patients with stroke, which facilitated changes in neuroplasticity and enhanced lower limb motor function. REGISTRATION Chinese Clinical Trail Registry: ChiCTR1900028262. Registered Date: December 16,2019. Registration-URL: http://www.chictr.org.cn.
Collapse
Affiliation(s)
- Tao Fan
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Peng Zheng
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xue Zhang
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ze Gong
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yu Shi
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Mingyang Wei
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jing Zhou
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Longlong He
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Shilin Li
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Qing Zeng
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pengcheng Lu
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yijin Zhao
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jihua Zou
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rong Chen
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zhangqi Peng
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Chenyu Xu
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Guozhi Huang
- Center of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
3
|
George CM, Dabbagh A, Unger J, Babatunde F, MacDermid JC. Quality of life measures for people following stroke: a structured content review. Qual Life Res 2025; 34:893-912. [PMID: 39708184 DOI: 10.1007/s11136-024-03877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Patient Reported Outcome Measures (PROMs) are used widely to collect patient perspectives on their Health-Related Quality of Life (HRQoL) after stroke. Existing reviews on PROMs typically report the psychometric properties but rarely focus on the content validity. We performed a structured review of the content of items of stroke-specific HRQoL outcomes. METHODS We searched four databases using a combination of terms (Stroke, HRQoL, PROMs) to choose the three most frequently used stroke-specific HRQoL-related PROMs. Two raters independently linked the items of the Stroke Impact Scale, Stroke Specific Quality of Life and the Stroke and Aphasia Quality of Life to the International Classification of Functioning, Disability and Health (ICF) and Item Perspective Classification (IPC). We compared the ICF codes to the ICF Core Sets for Stroke and calculated ICF linkage indicators. RESULTS More than 75% of the content for all three PROMs is represented in the Comprehensive Stroke Core Set, indicating the universality and validity of the content of these PROMs. All three PROMs represent the content of the ICF Core Sets for Stroke to a similar extent. Most items use an Intensity response option and have a Descriptive perspective. On the IPC framework, most items have a Rational appraisal type and represent the Biological domain. CONCLUSION Clinicians and researchers should use patient goals as a reference to choose the appropriate PROM. A deeper understanding of the content of PROMs can help clinicians and researchers make informed decisions on which HRQoL outcomes to use among people following stroke.
Collapse
Affiliation(s)
| | - Armaghan Dabbagh
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON, Canada
| | - Janelle Unger
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - Folarin Babatunde
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - Joy C MacDermid
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Rha YH, Shin JB, Choi JH, Min Im S, Shin IK. Effects of robot-assisted gait training on trunk symmetry improvement in patients with chronic hemiplegia: A randomized, single-blind clinical trial. Hum Mov Sci 2025; 101:103339. [PMID: 40056542 DOI: 10.1016/j.humov.2025.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Stroke-induced gait impairments often result in asymmetrical trunk alignment, affecting mobility and quality of life of patients. This randomized, single-blind clinical trial investigated the efficacy of robot-assisted gait training in addressing this issue and explored its impact on lower limb functions. METHODS Fifty patients with chronic stroke were included in this study, with one group receiving traditional rehabilitation therapy and the other receiving additional robot-assisted gait training session. Participants in the robot-assisted gait training (RAGT) group underwent 30-min session, thrice per week for 4 weeks, totaling 12 sessions, in addition to traditional rehabilitation therapy. All participants underwent preintervention assessments, with reassessments at 2 and 4 weeks after the intervention. We assessed trunk symmetry and gait parameters, including step time, step length, separation line, and foot force, along with knee joint extensor muscle strength and stiffness. FINDINGS Significant improvements in trunk symmetry were observed in the RAGT group (F(2,46) = 35.52, p < 0.001, η2 = 0.607). Changes in step length asymmetry were significant for both groups (p < 0.000 each) without intergroup differences, whereas paralyzed knee extensor strength showed greater improvement in the RAGT group (p < 0.001). INTERPRETATION The study findings revealed significant improvements in trunk symmetry and muscle strength among patients receiving RAGT. These results underscore the promising role of RAGT in stroke rehabilitation. Thus, proper gait patterns may contribute to maintaining a healthy posture.
Collapse
Affiliation(s)
- Young Hyoun Rha
- Department of Physical Therapy, Busan Veterans Hospital, 420, Baegyang-daero, Sasang-gu, Busan 46996, Republic of Korea.
| | - Jun Bum Shin
- Department of Physical Therapy, 1 Step Rehabilitation Laboratory Center 1, Jungang-daero 824beon-gil, Busanjin-gu, Busan 47236, Republic of Korea
| | - Jee Hwan Choi
- Department of Physical Therapy, Busan Veterans Hospital, 420, Baegyang-daero, Sasang-gu, Busan 46996, Republic of Korea
| | - Sang Min Im
- Department of Physical Therapy, Busan Veterans Hospital, 420, Baegyang-daero, Sasang-gu, Busan 46996, Republic of Korea
| | - Im Kyoung Shin
- Department of Physical Therapy, Busan Veterans Hospital, 420, Baegyang-daero, Sasang-gu, Busan 46996, Republic of Korea
| |
Collapse
|
5
|
Okumuş B, Akıncı B, Aytutuldu GK, Baran MS. Impact of upper extremity robotic rehabilitation on respiratory parameters, functional capacity and dyspnea in patients with stroke: a randomized controlled study. Neurol Sci 2025; 46:1257-1266. [PMID: 39527236 DOI: 10.1007/s10072-024-07868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Stroke leads to reduced mobility and functional capacity, also negatively affects respiratory functions and muscle strength. AIM To examine the effects of adding upper extremity robotic rehabilitation to conventional treatment on respiratory parameters, functional capacity, mobility, and dyspnea. METHOD Thirty-four stroke patients aged 18-65/years were randomized into Conventional Rehabilitation (CR) or Upper Extremity Robotic Rehabilitation (RR) groups. Both groups received conventional treatment for 5 days/week, for 6 weeks. Additionally, the RR group participated in upper extremity robotic rehabilitation (ExoRehab X, Houston Bionics) twice/week. Respiratory muscle strength (Maximum Inspiratory Pressure-MIP and Maximum Expiratory Pressure-MEP) and respiratory functions (forced expiratory flow first second (FEV1)), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow (PEF), and forced expiratory flow-25-75% (FEF 25-75%) were assessed. Functional capacity was evaluated with 6-minute walk test (6-MWT), mobility was assessed with Timed Up and Go (TUG) test, and dyspnea was measured using Dyspnea-12 test. RESULTS Both groups showed improvements in MIP, MEP, 6MWT and TUG scores. Additionally, significant increases were observed in PEF in the CR group and in FVC, FEV1, %FEF 25-75, and reduced dyspnea in the RR group (all p < 0.05). The groups were similar in terms of mean changes, except for FVC (p = 0.004) and FEV1 (p = 0.002), which were significantly higher in RR group. CONCLUSION Combining upper extremity robotic rehabilitation with conventional rehabilitation in stroke patients led to similar improvements in respiratory muscle strength, functional capacity, and mobility while also improving some respiratory parameters and reducing the perception of dyspnea. TRIAL REGISTRATION NUMBER NCT05550311.
Collapse
Affiliation(s)
- Büşra Okumuş
- Postgraduate Education Institute, Department of Physiotherapy and Rehabilitation, Biruni University, İstanbul, Turkey
| | - Buket Akıncı
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation (English), Biruni University, İstanbul, Turkey.
| | - Güzin Kaya Aytutuldu
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation (English), Biruni University, İstanbul, Turkey
| | - Mehmet Salih Baran
- Istinye University Hospital, Gaziosmanpaşa Medical Park, İstanbul, Turkey
| |
Collapse
|
6
|
Huang H, Su X, Zheng B, Cao M, Zhang Y, Chen J. Effect and optimal exercise prescription of robot-assisted gait training on lower extremity motor function in stroke patients: a network meta-analysis. Neurol Sci 2025; 46:1151-1167. [PMID: 39312061 DOI: 10.1007/s10072-024-07780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/18/2024] [Indexed: 01/03/2025]
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness of robot-assisted gait training (RAGT) and explore the optimal exercise prescription using a network meta-analysis approach. DATA SOURCES A comprehensive search was conducted on randomized controlled trials comparing robotic and conventional rehabilitation published up to January 2024 in PubMed, Web of Science, Cochrane Library, Embase, CNKI, VIP, Wanfang, and SinoMed databases. REVIEW METHODS The evaluation parameters included Fugl-Meyer Assessment of Lower Extremity (FMA-LE), Functional Ambulation Category (FAC), Berg Balance Scale (BBS), and 6-Minute Walk Test (6MWT). Two investigators independently performed study screening, data extraction, and bias evaluation. Data were merged, analyzed, and plotted using Review Manager 5.4.1 and Stata 18.0 software. RESULTS A total of 21 articles involving 822 subjects were included in the analysis. RAGT positively influenced FMA-LE score (MD = 3.74, 95%CI 3.02-4.46, P < 0.05), FAC score (MD = 0.31, 95%CI 0.1-0.53, P < 0.05), BBS score (MD = 3.63, 95%CI 2.46-4.80, P < 0.05), and 6MWT score (MD = 23.73, 95%CI 15.31-32.14, P < 0.05). Surface under the cumulative ranking curve (SUCRA) values indicated that an exercise time of 40-60 min/training (97.4%), exercise frequency of 2-5 times/week (87.6%), and exercise duration of 8-12 weeks (78.1%) were most effective in improving the FMA-LE score. CONCLUSIONS RAGT can effectively improve lower limb motor function, walking function, balance function, and walking endurance in stroke patients. For optimal improvement in FMA-LE score, an exercise time of 40-60 min/training, exercise frequency of 2-5 times/week, and exercise duration of 8-12 weeks are recommended.
Collapse
Affiliation(s)
- Haiping Huang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyi Su
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuqian Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Department of Neurorehabilitation, Zhejiang Rehabilitation Medical Center, No. 2828, Binsheng Road, Binjiang District, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Seo K, Jang T, Seo J. Effect of AI intervention programs for older adults on the quality of life: A systematic review and meta-analysis of randomized controlled trials. Digit Health 2025; 11:20552076251324014. [PMID: 40123881 PMCID: PMC11930482 DOI: 10.1177/20552076251324014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Background The extension of life expectancy due to medical advancements has resulted in global aging and increased social costs for elder care. Additionally, stringent health measures related to infectious disease pandemics have adversely affected the quality of life for older adults. This study investigates AI-based interventions to address quality of life issues. Objective This study systematically examines AI interventions for the older adults, focusing on randomized experimental studies, and aims to provide guidelines for future intervention programs through meta-analysis. Method A comprehensive meta-analysis that examines the impact of various AI interventions on the overall quality of life experienced by older adults has been conducted, encompassing thirteen randomized controlled trials. Results The overall effect size of AI intervention programs on the quality of life in the older adults, assessed using the random-effects model, was found to be small (Hedges' g = 0.30, 95% CI = 0.10-0.51). Additionally, the effect size of quality of life was examined based on the subfactors of the AI intervention program, revealing a range of 5-11 weeks. Robot intervention exhibited a higher effect size than smart device intervention. Conclusion To improve the quality of life of older adults, further investigation is warranted, including a follow-up study to develop a AI-based intervention program tailored to the type of AI program and intervention duration.
Collapse
Affiliation(s)
- Kawoun Seo
- Department of Nursing, Joongbu University, Geumsan-gun, Republic of Korea
| | - Taejeong Jang
- Department of Nursing, Joongbu University, Geumsan-gun, Republic of Korea
| | - Jisu Seo
- College of Nursing, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Sánchez-Gil JJ, Sáez-Manzano A, López-Luque R, Ochoa-Sepúlveda JJ, Cañete-Carmona E. Gamified devices for stroke rehabilitation: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108476. [PMID: 39520875 DOI: 10.1016/j.cmpb.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Rehabilitation after stroke is essential to minimize permanent disability. Gamification, the integration of game elements into non-game environments, has emerged as a promising strategy for increasing motivation and rehabilitation effectiveness. This article systematically reviews the gamified devices used in stroke rehabilitation and evaluates their impact on emotional, social, and personal effects on patients, providing a comprehensive view of gamified rehabilitation. METHODS A comprehensive search using the PRISMA 2020 guidelines was conducted using the IEEE Xplore, PubMed, Springer Link, APA PsycInfo, and ScienceDirect databases. Empirical studies published between January 2019 and December 2023 that quantified the effects of gamification in terms of usability, motivation, engagement, and other qualitative patient responses were selected. RESULTS In total, 169 studies involving 6404 patients were included. Gamified devices are categorized into four types: robotic/motorized, non-motorized, virtual reality, and neuromuscular electrical stimulation. The results showed that gamified devices not only improved motor and cognitive function but also had a significant positive impact on patients' emotional, social and personal levels. Most studies have reported high levels of patient satisfaction and motivation, highlighting the effectiveness of gamification in stroke rehabilitation. CONCLUSIONS Gamification in stroke rehabilitation offers significant benefits beyond motor and cognitive recovery by improving patients' emotional and social well-being. This systematic review provides a comprehensive overview of the most effective gamified technologies and highlights the need for future multidisciplinary research to optimize the design and implementation of gamified solutions in stroke rehabilitation.
Collapse
Affiliation(s)
- Juan J Sánchez-Gil
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain.
| | - Aurora Sáez-Manzano
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| | - Rafael López-Luque
- Institute of Neurosciences, Hospital Cruz Roja de Córdoba, Córdoba, Spain
| | | | - Eduardo Cañete-Carmona
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| |
Collapse
|
9
|
Akinci M, Burak M, Kasal FZ, Özaslan EA, Huri M, Kurtaran ZA. The Effects of Combined Virtual Reality Exercises and Robot Assisted Gait Training on Cognitive Functions, Daily Living Activities, and Quality of Life in High Functioning Individuals With Subacute Stroke. Percept Mot Skills 2024; 131:756-769. [PMID: 38418444 DOI: 10.1177/00315125241235420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Stroke is a global health concern causing significant mortality. Survivors face physical, cognitive, and emotional challenges, affecting their life satisfaction and social participation. Robot-assisted gait training with virtual reality, like Lokomat, is a promising rehabilitation tool. We investigated its impact on cognitive status, activities of daily living, and quality of life in individuals with stroke. Between September 2022 and August 2023, we exposed 34 first stroke patients (8 women, 26 men; M age = 59.15, SD = 11.09; M height = 170.47, SD = 8.13 cm; M weight = 75.97; SD = 10.87 kg; M days since stroke = 70.44, SD = 33.65) in the subacute stage (3-6 months post-stroke) to Lokomat exercise. Participant exclusion criteria were Lokamat exercise inability, disabilities incompatible with intended measurements, and any cognitive limitations. The Control Group (CG) received conventional physiotherapy, while the Lokomat Group (LG) received both conventional physiotherapy and robot-assisted gait training with virtual reality, administered by an occupational therapist. Evaluations were conducted by a physiotherapist who was unaware of the participants' group assignments and included assessments with the Montreal Cognitive Assessment, Lawton Brody Instrumental Activities of Daily Living Scale, and Stroke Specific Quality of Life Scale (SS-QoL). Both groups demonstrated an improved quality of life, but the LG outperformed the CG with regard to SS-QoL (p = .01) on measures of Energy (p = .002) and Mobility (p = .005). Both groups showed improvements in cognitive functioning (p < .001) with no between-group difference, and in activities of daily living (p < .05) for which the LG was superior to the CG (p = .023). Thus, adding robot-assisted gait training with Lokomat and virtual reality improved self-reported quality of life and daily activities at levels beyond conventional physiotherapy for patients in the subacute stroke phase. An incremental impact on cognitive functions was not evident, possibly due to rapid cognitive recovery or this was undetected by limited cognitive testing.
Collapse
Affiliation(s)
- Murat Akinci
- Department of Physical Therapy and Rehabilitation, Ankara City Hospital, Ankara, Turkey
| | - Mustafa Burak
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazığ, Turkey
| | | | - Ezgi Aydın Özaslan
- Department of Physical Therapy and Rehabilitation, Ankara City Hospital, Ankara, Turkey
| | - Meral Huri
- Department of Occupational Therapy, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Zeynep Aydan Kurtaran
- Department of Physical Therapy and Rehabilitation, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Chen S, Zhang W, Wang D, Chen Z. How robot-assisted gait training affects gait ability, balance and kinematic parameters after stroke: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2024; 60:400-411. [PMID: 38647534 PMCID: PMC11261306 DOI: 10.23736/s1973-9087.24.08354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Gait ability is often cited by stroke survivors. Robot-assisted gait training (RAGT) can help stroke patients with lower limb motor impairment regain motor coordination. EVIDENCE ACQUISITION PubMed, Cochrane Library, Embase were systematically searched until September 2023, to identify randomized controlled trials presenting: stroke survivors as participants; RAGT as intervention; conventional rehabilitation as a comparator; gait assessment, through scales or quantitative parameters, as outcome measures. EVIDENCE SYNTHESIS Twenty-seven publications involving 1167 patients met the inclusion criteria. Meta-analysis showed no significant differences in speed, cadence, spatial symmetry, and changes in joint mobility angles between the RAGT group and the control group. In addition, RAGT was associated with changes in affected side step length (SMD=0.02, 95% CI: 0.01, 0.03; P<0.0001), temporal symmetry (SMD=-0.38, 95% CI: -0.6, -0.16; P=0.0006], Six-Minute Walk Test (SMD=25.14, 95% CI: 10.19, 40.09; P=0.0010] and Functional Ambulation Categories (SMD=0.32, 95% CI: 0.01, 0.63; P=0.04). According to the PEDro scale, 19 (70.4%) studies were of high quality and eight were of moderate quality (29.6%). CONCLUSIONS Taken together, the review synthesis showed that RAGT might have a potential role in the recovery of walking dysfunction after stroke. However, its superiority over conventional rehabilitation requires further research. Additionally, it may provide unexpected benefits that the effects of RAGT with different types or treatment protocols were further compared.
Collapse
Affiliation(s)
- Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wanying Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dingyu Wang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhaoming Chen
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China -
| |
Collapse
|
11
|
Ahmed I, Mustafaoglu R, Erhan B. The effects of low-intensity resistance training with blood flow restriction versus traditional resistance exercise on lower extremity muscle strength and motor functionin ischemic stroke survivors: a randomized controlled trial. Top Stroke Rehabil 2024; 31:418-429. [PMID: 37724785 DOI: 10.1080/10749357.2023.2259170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Blood flow restriction (BFR) training can temporarily reduce cortical GABA concentrations and increase the size of motor volleys to deafferented muscles, which can promote motor recovery in stroke survivors. OBJECTIVE To determine the effect of low-intensity resistance training with BFR (LIRT-BFR) on lower extremity muscle strength, balance, functional mobility, walking capacity, gait speed, anxiety, and depression in stroke survivors and to compare the results with high-intensity resistance training (HIRT). METHOD It was a two-arm, single-blinded, randomized controlled trial in which 32 ischemic stroke participants were randomly allocated to LIRT-BFR or HIRT group. The LIRT-BFR group received low load resistance training (40% of 1-Repetition Maximum (1-RM)) with BFR, whereas HIRT group received high load resistance training (80% of 1-RM). The 6-Minute Walk Test (6-MWT), five-time sit-to-stand test (5TSTST), Timed Up and Go (TUG) test, and Barthel index were the primary outcome measures. The secondary outcome measures included gait speed (m/s), stride length (cm), cadence (steps/min), and Hospital Anxiety and Depression. RESULTS All the primary and secondary outcome measures were significantly improved in both groups (p < 0.05). The LIRT-BFR group showed a slightly greater, but non-significant, improvement as compared to the HIRT group in terms of mean change observed in 6-MWT (81 m vs 62 m), 5TSTST (-5.27 vs -4.81), gait speed (0.19 vs 0.12), stride length (18 vs 13), and cadence (8 vs 6). No adverse event was reported. CONCLUSION LIRT-BFR produced a significant improvement in muscle strength, balance, walking capacity, and anxiety and depression in ischemic stroke patients, and the improvement are comparable to HIRT. CLINICAL TRIAL REGISTRATION NCT05281679.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkiye
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rustem Mustafaoglu
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul University-Cerrahpasa, Istanbul, Turkiye
| | - Belgin Erhan
- Department of Physical Medicine and Rehabilitation, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkiye
| |
Collapse
|
12
|
Park YH, Lee DH, Lee JH. A Comprehensive Review: Robot-Assisted Treatments for Gait Rehabilitation in Stroke Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:620. [PMID: 38674266 PMCID: PMC11052271 DOI: 10.3390/medicina60040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Robot-assisted gait training (RAGT) is at the cutting edge of stroke rehabilitation, offering a groundbreaking method to improve motor recovery and enhance the quality of life for stroke survivors. This review investigates the effectiveness and application of various RAGT systems, including both end-effector and exoskeleton robots, in facilitating gait enhancements. The selection process for this comprehensive analysis involved a meticulous review of the literature from databases such as PubMed, the Cochrane Library, and EMBASE, focusing on studies published between 2018 and 2023. Ultimately, 27 studies met the criteria and were included in the final analysis. The focus of these studies was on the various RAGT systems and their role in promoting gait and balance improvements. The results of these studies conclusively show that patients experience significant positive effects from RAGT, and when combined with other physiotherapy methods, the outcomes are notably superior in enhancing functional ambulation and motor skills. This review emphasizes RAGT's capability to deliver a more customized and effective rehabilitation experience, highlighting the importance of tailoring interventions to meet the specific needs of each patient.
Collapse
Affiliation(s)
- Yong-Hwa Park
- Immanuel Medical Rehabilitation Hospital, 2140, Cheongnam-ro, Cheongju-si 28702, Republic of Korea; (Y.-H.P.); (D.-H.L.)
| | - Dae-Hwan Lee
- Immanuel Medical Rehabilitation Hospital, 2140, Cheongnam-ro, Cheongju-si 28702, Republic of Korea; (Y.-H.P.); (D.-H.L.)
| | - Jung-Ho Lee
- Department of Physical Therapy, University of Kyungdong, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Republic of Korea
| |
Collapse
|
13
|
Teodoro J, Fernandes S, Castro C, Fernandes JB. Current Trends in Gait Rehabilitation for Stroke Survivors: A Scoping Review of Randomized Controlled Trials. J Clin Med 2024; 13:1358. [PMID: 38592172 PMCID: PMC10932333 DOI: 10.3390/jcm13051358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Stroke stands as a significant global health concern, constituting a leading cause of disability worldwide. Rehabilitation interventions are crucial in aiding the recovery of stroke patients, contributing to an overall enhancement in their quality of life. This scoping review seeks to identify current trends in gait rehabilitation for stroke survivors. METHODS The review followed the methodological framework suggested by Arksey and O'Malley. Electronic databases, such as CINAHL Complete, MEDLINE Complete, and Nursing & Allied Health Collection, were systematically searched in November 2023. Inclusion criteria comprised papers published in either English or Portuguese from 2013 to 2023. RESULTS From the initial search, a total of 837 papers were identified; twenty-one papers were incorporated into this review. Thirteen distinct categories of gait rehabilitation interventions were identified, encompassing diverse approaches. These categories comprise conventional rehabilitation exercises, traditional gait training with integrated technology, and gait training supported by modern technologies. CONCLUSIONS Although traditional rehabilitation exercises have historically proven effective in aiding stroke survivors, a recent trend has emerged, emphasizing the development and integration of innovative therapeutic approaches that harness modern technologies.
Collapse
Affiliation(s)
- Joana Teodoro
- Department of Nursing, Hospital Garcia de Orta, 2805-267 Almada, Portugal;
- Nurs* Lab, 2829-511 Almada, Portugal; (S.F.); (C.C.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Sónia Fernandes
- Nurs* Lab, 2829-511 Almada, Portugal; (S.F.); (C.C.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Cidália Castro
- Nurs* Lab, 2829-511 Almada, Portugal; (S.F.); (C.C.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Júlio Belo Fernandes
- Nurs* Lab, 2829-511 Almada, Portugal; (S.F.); (C.C.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| |
Collapse
|
14
|
Kim E, Lee G, Lee J, Kim YH. Simultaneous high-definition transcranial direct current stimulation and robot-assisted gait training in stroke patients. Sci Rep 2024; 14:4483. [PMID: 38396060 PMCID: PMC10891044 DOI: 10.1038/s41598-024-53482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigates whether simultaneous high-definition transcranial direct current stimulation (HD-tDCS) enhances the effects of robot-assisted gait training in stroke patients. Twenty-four participants were randomly allocated to either the robot-assisted gait training with real HD-tDCS group (real HD-tDCS group) or robot-assisted gait training with sham HD-tDCS group (sham HD-tDCS group). Over four weeks, both groups completed 10 sessions. The 10 Meter Walk Test, Timed Up and Go, Functional Ambulation Category, Functional Reach Test, Berg Balance Scale, Dynamic Gait Index, Fugl-Meyer Assessment, and Korean version of the Modified Barthel Index were conducted before, immediately after, and one month after the intervention. The real HD-tDCS group showed significant improvements in the 10 Meter Walk Test, Timed Up and Go, Functional Reach Test, and Berg Balance Scale immediately and one month after the intervention, compared with before the intervention. Significant improvements in the Dynamic Gait Index and Fugl-Meyer Assessment were also observed immediately after the intervention. The sham HD-tDCS group showed no significant improvements in any of the tests. Application of HD-tDCS during robot-assisted gait training has a positive effect on gait and physical function in chronic stroke patients, ensuring long-term training effects. Our results suggest the effectiveness of HD-tDCS as a complementary tool to enhance robotic gait rehabilitation therapy in chronic stroke patients.
Collapse
Affiliation(s)
- Eunmi Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Gihyoun Lee
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea.
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Haeundae Sharing and Happiness Hospital, Busan, 48101, Republic of Korea.
| |
Collapse
|
15
|
Elmas Bodur B, Erdoğanoğlu Y, Asena Sel S. Effects of robotic-assisted gait training on physical capacity, and quality of life among chronic stroke patients: A randomized controlled study. J Clin Neurosci 2024; 120:129-137. [PMID: 38241771 DOI: 10.1016/j.jocn.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Even though robotic therapy is becoming more commonly used in research protocols for lower limb stroke rehabilitation, there still is a significant gap between research evidence and its use in clinical practice. Therefore, the present study was designed assuming that the wearable mobile gait device training for chronic stroke patients might have different effects on functional independence when compared to training with a stationary gait device. The present study aims to examine the effects of gait training with ExoAthlet exoskeleton and Lokomat Free-D on functional independence, functional capacity, and quality of life in chronic stroke patients. METHODS The present study included 32 chronic stroke patients. Participants were randomly divided into two groups. Functional independence of patients was evaluated by using Functional Independence Measure (FIM), physical function was assessed by using the 30-second chair stand test (30-CST), functional capacity was measured by using the 6-Minute Walk Test (6MWT), and quality of life was assessed by using Short Form 36 (SF36). All participants underwent a conventional physiotherapy program for eight weeks, three sessions per week, and each session lasted 60 min. After the physiotherapy program, one group received gait training by using ExoAthlet exoskeleton (ExoAtlet 1 model/2019, Russia), while the other group received training by using Lokomat Free-D (Hocoma, Lokomat Pro Free-D model/2015, Switzerland). Participants were assessed at baseline and post-intervention. RESULTS Results achieved in this study revealed that there was a statistically significant difference between FIM, 30-CST, 6MWT, and SF36 scores before and after the treatment in both groups (p < 0.05).There was no difference in FIM, 30-CST, and 6MWT results between Exoskeleton ExoAthlet and Lokomat Free-D groups (p > 0.05). However, there was a statistically significant difference between Exoskeleton ExoAthlet and Lokomat Free-D groups in terms of SF-36 sub-parameters "vitality", "mental health", "bodily pain", and "general health perception" (p < 0.05). CONCLUSIONS This study demonstrated that the use of ExoAthlet exoskeleton and Lokomat Free-D in addition to conventional physiotherapy, was effective in improving functional independence, physical function, functional capacity, and quality of life among chronic stroke patients. Incorporation of robotic gait aids into rehabilitation for chronic stroke patients might offer significant advantages.
Collapse
Affiliation(s)
| | - Yıldız Erdoğanoğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey.
| | - Sinem Asena Sel
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
16
|
Lee SY, Choi YS, Kim MH, Chang WN. Effects of robot-assisted walking training on balance, motor function, and ADL depending on severity levels in stroke patients. Technol Health Care 2024; 32:3293-3307. [PMID: 38820034 DOI: 10.3233/thc-232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Despite the explosive increase in interest regarding Robot-Assisted Walking Training (RAWT) for stroke patients, very few studies have divided groups according to the severity levels of patients and conducted studies on the effects of RAWT. OBJECTIVE The purpose of this study was to present a definite basis for physical therapy using the robot-assisted walking device through a more detailed comparison and analysis and to select the optimal target of RAWT. METHODS This study was designed as a prospective and randomized controlled trial to investigate the effect of RAWT on balance, motor function, and Activities of Daily Living (ADL) depending on severity levels in stroke patients. 100 participants were randomly divided into study and control groups in equal numbers. The study group was 49 and the control group was 47. One from the study group and three from the control group were eliminated. The study period is four weeks in total, and RAWT is performed five times a week for 40 minutes only for study group. During the same period, all group members had 30 minutes of Conventional Physiotherapy (CP) five times a week. RESULTS The results of this study clearly confirmed that RAWT combined with CP produces more significant improvement in patients with stroke than the CP alone. And they indicated that RAWT had a more considerable effect in the poor or fair trunk control group for trunk balance and in the high fall risk group for balance. In motor function, RAWT showed its value in the severe and marked motor impairment group. The total or severe dependence group in ADL experienced more improvements for RAWT. CONCLUSION This study can be concluded that the lower the level of physical functions, the more effective it responds to RAWT. As demonstrated in the results of this study, the potential of current robotic technology appears to be greatest at very low functional levels of stroke patients. Patients with low functional levels among stroke patients may benefit from robot rehabilitation.
Collapse
Affiliation(s)
- Soo Yong Lee
- Department of Physical Therapy, Severance Rehabilitation Hospital, Yonsei University, Seoul, Korea
| | - Yu Sik Choi
- Department of Physical Therapy, Seoul Metropolitan Seonam Hospital, Seoul, Korea
| | - Min Hyuk Kim
- Department of Physical Therapy, Clinical Application Team, Jungwoo Trade, Goyang, Korea
| | - Woo Nam Chang
- Department of Physical Therapy, College of Health & Welfare Science, Yong In University, Yongin, Korea
| |
Collapse
|
17
|
Widuch-Spodyniuk A, Tarnacka B, Korczyński B, Wiśniowska J. Impact of Robotic-Assisted Gait Therapy on Depression and Anxiety Symptoms in Patients with Subacute Spinal Cord Injuries (SCIs)-A Prospective Clinical Study. J Clin Med 2023; 12:7153. [PMID: 38002765 PMCID: PMC10672092 DOI: 10.3390/jcm12227153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Mood disorders, especially depression, and emotional difficulties such as anxiety are very common problems among patients with spinal cord injuries (SCIs). The lack of physical training may deteriorate their mental state, which, in turn, has a significant impact on their improvement in functioning. The aim of the present study was to examine the influence of innovative rehabilitation approaches involving robotic-assisted gait therapy (RAGT) on the depression and anxiety symptoms in patients with SCI. METHODS A total of 110 participants with subacute SCIs were enrolled in this single-center, single-blinded, single-arm, prospective study; patients were divided into experimental (robotic-assisted gait therapy (RAGT)) and control (conventional gait therapy with dynamic parapodium (DPT)) groups. They received five training sessions per week over 7 weeks. At the beginning and end of therapy, the severity of depression was assessed via the Depression Assessment Questionnaire (KPD), and that of anxiety symptoms was assessed via the State-Trait Anxiety Inventory (STAI X-1). RESULTS SCI patients in both groups experienced significantly lower levels of anxiety- and depression-related symptoms after completing the seven-week rehabilitation program (KPD: Z = 6.35, p < 0.001, r = 0.43; STAI X-1: Z = -6.20, p < 0.001, r = 0.42). In the RAGT group, post-rehabilitation measurements also indicated an improvement in psychological functioning (i.e., decreases in depression and anxiety and an increase in self-regulation (SR)). Significant results were noted for each variable (STAI X-1: Z = -4.93; KPD: Z = -5.26; SR: Z = -3.21). In the control group, there were also decreases in the effects on depression and state anxiety and an increase in self-regulation ability (STAI X-1: Z = -4.01; KPD: Z = -3.65; SR: Z = -2.83). The rehabilitation modality did not appear to have a statistically significant relationship with the magnitude of improvement in the Depression Assessment Questionnaire (KPD) (including self-regulation) and State-Trait Anxiety Inventory (STAI) scores. However, there were some significant differences when comparing the groups by the extent and depth of the injury and type of paralysis. Moreover, the study did not find any significant relationships between improvements in physical aspects and changes in psychological factors. CONCLUSIONS Subjects in the robotic-assisted gait therapy (RAGD) and dynamic parapodium training (DPT) groups experienced decreases in anxiety and depression after a 7-week rehabilitation program. However, the rehabilitation modality (DPT vs. RAGT) did not differentiate between the patients with spinal cord injuries in terms of the magnitude of this change. Our results suggest that individuals with severe neurological conditions and complete spinal cord injuries (AIS A, according to the Abbreviated Injury Scale classification) may experience greater benefits in terms of changes in the psychological parameters after rehabilitation with RAGT.
Collapse
Affiliation(s)
- Alicja Widuch-Spodyniuk
- Research Institute for Innovative Methods of Rehabilitation of Patients with Spinal Cord Injury in Kamien Pomorski, Health Resort Kamien Pomorski, 72-400 Kamień Pomorski, Poland; (A.W.-S.)
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Bogumił Korczyński
- Research Institute for Innovative Methods of Rehabilitation of Patients with Spinal Cord Injury in Kamien Pomorski, Health Resort Kamien Pomorski, 72-400 Kamień Pomorski, Poland; (A.W.-S.)
| | - Justyna Wiśniowska
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
18
|
Kamimoto T, Hosoi Y, Tanamachi K, Yamamoto R, Yamada Y, Teramae T, Noda T, Kaneko F, Tsuji T, Kawakami M. Combined Ankle Robot Training and Robot-assisted Gait Training Improved the Gait Pattern of a Patient with Chronic Traumatic Brain Injury. Prog Rehabil Med 2023; 8:20230024. [PMID: 37593197 PMCID: PMC10427343 DOI: 10.2490/prm.20230024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
Background : Walking disability caused by central nervous system injury often lingers. In the chronic phase, there is great need to improve walking speed and gait, even for patients who walk independently. Robot-assisted gait training (RAGT) has been widely used, but few studies have focused on improving gait patterns, and its effectiveness for motor function has been limited. This report describes the combination of "RAGT to learn the gait pattern" and "ankle robot training to improve motor function" in a patient with chronic stage brain injury. Case : A 34-year-old woman suffered a traumatic brain injury 5 years ago. She had residual right hemiplegia [Fugl-Meyer Assessment-Lower Extremity (FMA-LE): 18 points] and mild sensory impairment, but she walked independently with a short leg brace and a cane. Her comfortable gait speed was 0.57 m/s without an orthosis, and her 6-m walk test distance was 240 m. The Gait Assessment and Intervention Tool (G.A.I.T.) score was 35 points. After hospitalization, ankle robot training was performed daily, with RAGT performed 10 times in total. Post-intervention evaluation performed on Day 28 showed: FMA-LE, 23 points; comfortable walking speed, 0.69 m/s; G.A.I.T., 27 points; and three-dimensional motion analysis showed ankle dorsiflexion improved from 3.22° to 12.59° and knee flexion improved from 1.75° to 16.54° in the swing phase. Discussion : This is one of few studies to have examined the combination of two robots. Combining the features of each robot improved the gait pattern and motor function, even in the chronic phase.
Collapse
Affiliation(s)
- Takayuki Kamimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuichiro Hosoi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Tanamachi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Rieko Yamamoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Yamada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Teramae
- Department of Brain Robot Interface, Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Tomoyuki Noda
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Brain Robot Interface, Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Zhu YH, Ruan M, Yun RS, Zhong YX, Zhang YX, Wang YJ, Sun YL, Cui JW. Is Leg-Driven Treadmill-Based Exoskeleton Robot Training Beneficial to Poststroke Patients: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil 2023; 102:331-339. [PMID: 36075885 DOI: 10.1097/phm.0000000000002098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study is to systematically review the effects of leg-driven treadmill-based exoskeleton robot training on balance and walking ability in poststroke patients. DESIGN The PubMed, Cochrane Library, Embase, Web of Science, Medline, CNKI, VIP, and Wanfang databases were searched from inception to August 2021. The literature quality was evaluated using Cochrane Handbook. Primary outcomes include the Functional Ambulation Category Scale and Berg Balance Scale, and secondary outcomes include the 10 meter walk test, 6 minute walk test, and gait assessment cadence were analyzed. RESULTS Seventeen randomized controlled trials were included in the systematic review, 15 studies in meta-analysis. Primary outcomes showed no significant difference in the Functional Ambulation Category Scale score; subgroup with the exoskeleton robot + conventional therapy of the Berg Balance Scale score was significantly increased; secondary outcomes showed no significance in 6 minute walk test or 10 meter walk test. The cadence score increased for the subgroup with an onset of more than 6 mos in the treatment group. The control group performed better than the subgroup with an onset of less than 6 mos. CONCLUSIONS Leg-driven treadmill-based exoskeleton robot training can improve balance function in poststroke patients and is beneficial for patients with an onset of greater than 6 mos. However, there is no evidence to support the efficacy of walking ability.
Collapse
Affiliation(s)
- Ying-Hui Zhu
- From the School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y-HZ, MR, R-SY, Y-X Zhong, Y-X Zhang, Y-JW, J-WC); and Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y-JW, Y-LS)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zanatta F, Farhane-Medina NZ, Adorni R, Steca P, Giardini A, D'Addario M, Pierobon A. Combining robot-assisted therapy with virtual reality or using it alone? A systematic review on health-related quality of life in neurological patients. Health Qual Life Outcomes 2023; 21:18. [PMID: 36810124 PMCID: PMC9942343 DOI: 10.1186/s12955-023-02097-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND In the field of neurorehabilitation, robot-assisted therapy (RAT) and virtual reality (VR) have so far shown promising evidence on multiple motor and functional outcomes. The related effectiveness on patients' health-related quality of life (HRQoL) has been investigated across neurological populations but still remains unclear. The present study aimed to systematically review the studies investigating the effects of RAT alone and with VR on HRQoL in patients with different neurological diseases. METHODS A systematic review of the studies evaluating the impact of RAT alone and combined with VR on HRQoL in patients affected by neurological diseases (i.e., stroke, multiple sclerosis, spinal cord injury, Parkinson's Disease) was conducted according to PRISMA guidelines. Electronic searches of PubMed, Web of Science, Cochrane Library, CINAHL, Embase, and PsychINFO (2000-2022) were performed. Risk of bias was evaluated through the National Institute of Health Quality Assessment Tool. Descriptive data regarding the study design, participants, intervention, rehabilitation outcomes, robotic device typology, HRQoL measures, non-motor factors concurrently investigated, and main results were extracted and meta-synthetized. RESULTS The searches identified 3025 studies, of which 70 met the inclusion criteria. An overall heterogeneous configuration was found regarding the study design adopted, intervention procedures and technological devices implemented, rehabilitation outcomes (i.e., related to both upper and lower limb impairment), HRQoL measures administered, and main evidence. Most of the studies reported significant effects of both RAT and RAT plus VR on patients HRQoL, whether they adopted generic or disease-specific HRQoL measures. Significant post-intervention within-group changes were mainly found across neurological populations, while fewer studies reported significant between-group comparisons, and then, mostly in patients with stroke. Longitudinal investigations were also observed (up to 36 months), but significant longitudinal effects were exclusively found in patients with stroke or multiple sclerosis. Finally, concurrent evaluations on non-motor outcomes beside HRQoL included cognitive (i.e., memory, attention, executive functions) and psychological (i.e., mood, satisfaction with the treatment, device usability, fear of falling, motivation, self-efficacy, coping, and well-being) variables. CONCLUSIONS Despite the heterogeneity observed among the studies included, promising evidence was found on the effectiveness of RAT and RAT plus VR on HRQoL. However, further targeted short- and long-term investigations, are strongly recommended for specific HRQoL subcomponents and neurological populations, through the adoption of defined intervention procedures and disease-specific assessment methodology.
Collapse
Affiliation(s)
- Francesco Zanatta
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Naima Z Farhane-Medina
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Psychology, University of Córdoba, Córdoba, Spain
| | - Roberta Adorni
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| | - Patrizia Steca
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Anna Giardini
- Information Technology Department, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Marco D'Addario
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Antonia Pierobon
- Psychology Unit of Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| |
Collapse
|
21
|
Evaluation of a novel technology-supported fall prevention intervention - study protocol of a multi-centre randomised controlled trial in older adults at increased risk of falls. BMC Geriatr 2023; 23:103. [PMID: 36803459 PMCID: PMC9938567 DOI: 10.1186/s12877-023-03810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Increasing number of falls and fall-related injuries in an aging society give rise to the need for effective fall prevention and rehabilitation strategies. Besides traditional exercise approaches, new technologies show promising options for fall prevention in older adults. As a new technology-based approach, the hunova robot can support fall prevention in older adults. The objective of this study is to implement and evaluate a novel technology-supported fall prevention intervention using the hunova robot compared to an inactive control group. The presented protocol aims at introducing a two-armed, multi-centre (four sites) randomised controlled trial, evaluating the effects of this new approach on the number of falls and number of fallers as primary outcomes. METHODS The full clinical trial incorporates community-dwelling older adults at risk of falls with a minimum age of 65 years. Including a one-year follow-up measurement, all participants are tested four times. The training programme for the intervention group comprises 24-32 weeks in which training sessions are scheduled mostly twice a week; the first 24 training sessions use the hunova robot, these are followed by a home-based programme of 24 training sessions. Fall-related risk factors as secondary endpoints are measured using the hunova robot. For this purpose, the hunova robot measures the participants' performance in several dimensions. The test outcomes are input for the calculation of an overall score which indicates the fall risk. The hunova-based measurements are accompanied by the timed-up-and-go test as a standard test within fall prevention studies. DISCUSSION This study is expected to lead to new insights which may help establish a new approach to fall prevention training for older adults at risk of falls. First positive results on risk factors can be expected after the first 24 training sessions using the hunova robot. As primary outcomes, the number of falls and fallers within the study (including the one-year follow-up period) are the most relevant parameters that should be positively influenced by our new approach to fall prevention. After the study completion, approaches to examine the cost-effectiveness and develop an implementation plan are relevant aspects for further steps. TRIAL REGISTRATION German Clinical Trial Register (DRKS), ID: DRKS00025897. Prospectively registered 16 August 2021, https://drks.de/search/de/trial/DRKS00025897 .
Collapse
|
22
|
Yakşi E, Bahadır ES, Yaşar MF, Alışık T, Kurul R, Demirel A. The effect of robot-assisted gait training frequency on walking, functional recovery, and quality of life in patients with stroke. Acta Neurol Belg 2023; 123:583-590. [PMID: 36717532 DOI: 10.1007/s13760-023-02194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
AIM This study aims to investigate the effects of robot-assisted gait training (RAGT) frequency on walking, functional recovery, QoL and mood. METHODS Sixty patients aged 50-75, diagnosed with post-stroke hemiplegia were entered into the retrospective analysis. Participants who scored maximum 3 on the Modified Rankin Scale and were diagnosed with moderate stroke according to The NIH Stroke Scale were included in the study. The participants in group 1 (G1) received only conventional treatment (CT), in group 2 (G2) participants received one session of RAGT per week in addition to the CT program, and group 3 (G3) received two sessions of RAGT per week in addition to the CT program. 6-min walk test (6-MWT), Barthel Index (BI), Stroke-Specific Quality of Life Scale (SSQoL), and Beck Depression Inventory (BDI) were recorded. RESULTS Median change in SSQoL of G3 was significantly higher from median change of G1 (p < 0.05), and median change in BDI of G3 was significantly lower than median change of G1 (p < 0.05). Median change in BDI of G3 was also significantly lower from change of G2 (p < 0.05). CONCLUSION Two weekly sessions of RAGT in addition to CT exhibit positive effects on QoL and mood but no additional contribution to functional status.
Collapse
Affiliation(s)
- Elif Yakşi
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey.
| | - Elif Selim Bahadır
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Mustafa Fatih Yaşar
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Tuğba Alışık
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| | - Ramazan Kurul
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Adnan Demirel
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Bolu Abant Izzet Baysal University, 14020, Bolu, Turkey
| |
Collapse
|
23
|
den Brave M, Beaudart C, de Noordhout BM, Gillot V, Kaux JF. Effect of robot-assisted gait training on quality of life and depression in neurological impairment: A systematic review and meta-analysis. Clin Rehabil 2023; 37:876-890. [PMID: 36683416 DOI: 10.1177/02692155231152567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Robot-assisted gait training (RAGT) is often used as a rehabilitation tool for neurological impairments. The purpose of this study is to investigate the effects of rehabilitation with robotic devices on quality of life and depression. DATA SOURCES Two electronic databases (MEDLINE and Scopus) were searched for studies from inception up to December 2022. REVIEW METHODS Randomized controlled trials (RCTs) and non-RCTs were pooled separately for analyses, studying each one's mental and physical health and depression. Random effect meta-analyses were run using standardized mean difference and 95% confidence interval (CI). RESULTS A total of 853 studies were identified from the literature search. 31 studies (17 RCTs and 14 non-RCTs) including 1151 subjects met the inclusion criteria. 31 studies were selected for the systematic review and 27 studies for the meta-analysis. The outcome measure of mental health significantly improved in favor of the RAGT group in RCTs and non-RCTs (adjusted Hedges'g 0.72, 95% CI: 0.34-1.10, adjusted Hedges g = 0.80, 95% CI 0.21-1.39, respectively). We observed a significant effect of RAGT on physical health in RCTs and non-RCTs (adjusted Hedges'g 0.58, 95% CI 0.28, 0.88, adjusted Hedges g = 0.73, 95% CI 0.12, 1.33). After realizing a sensitivity analysis in RCTs, a positive impact on depression is observed (Hedges' g of -0.66, 95% CI -1.08 to -0.24). CONCLUSION This study suggests that RAGT could improve the quality of life of patients with neurological impairments. A positive impact on depression is also observed in the short term. Further studies are needed to differentiate grounded and overgrounded exoskeletons as well as RCT comparing overground exoskeletons with a control group.
Collapse
Affiliation(s)
- Meike den Brave
- Department of Physical and Rehabilitation Medicine, 26658University of Liège, Liège, Belgium
| | - Charlotte Beaudart
- Department of Public Health, Epidemiology and Health Economics, World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
| | | | | | - Jean-Francois Kaux
- Department of Rehabilitation and Sports Sciences, 26658University of Liège, Liège, Belgium.,Department of Physical Medicine and Sports Traumatology, SportS2, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athlete Health, FIMS Collaborative Center of Sports Medicine, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
24
|
Robotized Knee-Ankle-Foot Orthosis-Assisted Gait Training on Genu Recurvatum during Gait in Patients with Chronic Stroke: A Feasibility Study and Case Report. J Clin Med 2023; 12:jcm12020415. [PMID: 36675345 PMCID: PMC9860649 DOI: 10.3390/jcm12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Genu recurvatum (knee hyperextension) is a common problem after stroke. It is important to promote the coordination between knee and ankle movements during gait; however, no study has investigated how multi-joint assistance affects genu recurvatum. We are developing a gait training technique that uses robotized knee-ankle-foot orthosis (KAFO) to assists the knee and ankle joints simultaneously. This report aimed to investigate the safety of robotized KAFO-assisted gait training (Experiment 1) and a clinical trial to treat genu recurvatum in a patient with stroke (Experiment 2). Six healthy participants and eight patients with chronic stroke participated in Experiment 1. They received robotized KAFO-assisted gait training for one or 10 sessions. One patient with chronic stroke participated in Experiment 2 to investigate the effect of robotized KAFO-assisted gait training on genu recurvatum. The patient received the training for 30 min/day for nine days. The robot consisted of KAFO and an attached actuator of four pneumatic artificial muscles. The assistance parameters were adjusted by therapists to prevent genu recurvatum during gait. In Experiment 2, we evaluated the knee joint angle during overground gait, Fugl-Meyer Assessment of lower extremity (FMA-LE), modified Ashworth scale (MAS), Gait Assessment and Intervention Tool (G.A.I.T.), 10-m gait speed test, and 6-min walk test (6MWT) before and after the intervention without the robot. All participants completed the training in both experiments safely. In Experiment 2, genu recurvatum, FMA-LE, MAS, G.A.I.T., and 6MWT improved after robotized KAFO-assisted gait training. The results indicated that the multi-joint assistance robot may be effective for genu recurvatum after stroke.
Collapse
|
25
|
Mazzucchelli M, Mazzoleni D, Campanini I, Merlo A, Mazzoli D, Melegari C, Colombo V, Cerulli S, Piscitelli D, Perin C, Andrenelli E, Bizzarini E, Calabro RS, Carmignano SM, Cassio A, Chisari C, Dalise S, Fundaro C, Gazzotti V, Stampacchia G, Boldrini P, Mazzoleni S, Posteraro F, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Bonaiuti D. Evidence-based improvement of gait in post-stroke patients following robot-assisted training: A systematic review. NeuroRehabilitation 2022; 51:595-608. [PMID: 36502342 DOI: 10.3233/nre-220024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recovery of walking after stroke is a priority goal for recovering autonomy. In the last years robotic systems employed for Robotic Assisted Gait Training (RAGT) were developed. However, literature and clinical practice did not offer standardized RAGT protocol or pattern of evaluation scales. OBJECTIVE This systematic review aimed to summarize the available evidence on the use of RAGT in post-stroke, following the CICERONE Consensus indications. METHODS The literature search was conducted on PubMed, Cochrane Library and PEDro, including studies with the following criteria: 1) adult post-stroke survivors with gait disability in acute/subacute/chronic phase; 2) RAGT as intervention; 3) any comparators; 4) outcome regarding impairment, activity, and participation; 5) both primary studies and reviews. RESULTS Sixty-one articles were selected. Data about characteristics of patients, level of disability, robotic devices used, RAGT protocols, outcome measures, and level of evidence were extracted. CONCLUSION It is possible to identify robotic devices that are more suitable for specific phase disease and level of disability, but we identified significant variability in dose and protocols. RAGT as an add-on treatment seemed to be prevalent. Further studies are needed to investigate the outcomes achieved as a function of RAGT doses delivered.
Collapse
Affiliation(s)
| | - Daniele Mazzoleni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Isabella Campanini
- Department of Neuromotor and Rehabilitation, LAM-Motion Analysis Laboratory, San Sebastiano Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Merlo
- Department of Neuromotor and Rehabilitation, LAM-Motion Analysis Laboratory, San Sebastiano Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | - Davide Mazzoli
- Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | | | | | - Simona Cerulli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Cecilia Perin
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,San Donato Group, Istituti Clinici Zucchi, Monza, Italy
| | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Emiliana Bizzarini
- Department of Rehabilitation Medicine, Spinal Cord Unit, Gervasutta Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | | | | | - Anna Cassio
- Spinal Cord Unit and Intensive Rehabilitation Medicine, Ospedale di Fiorenzuola d'Arda, AUSL Piacenza, Piacenza, Italy
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | - Stefania Dalise
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | - Cira Fundaro
- Neurophysiopathology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Montescano, Pavia, Italy
| | - Valeria Gazzotti
- Centro Protesi Vigorso di Budrio, Istituto Nazionale Assicurazione Infortuni sul Lavoro (INAIL), Bologna, Italy
| | | | - Paolo Boldrini
- Italian Society of Physical Medicine and Rehabilitation (SIMFER), Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital - AUSL12, Viareggio, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (FAIP Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- Rehabilitation Unit, ULSS (Local Health Authority) Euganea, Camposampiero Hospital, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | | | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | |
Collapse
|
26
|
Zhou ZQ, Hua XY, Wu JJ, Xu JJ, Ren M, Shan CL, Xu JG. Combined robot motor assistance with neural circuit-based virtual reality (NeuCir-VR) lower extremity rehabilitation training in patients after stroke: a study protocol for a single-centre randomised controlled trial. BMJ Open 2022; 12:e064926. [PMID: 36564112 PMCID: PMC9791407 DOI: 10.1136/bmjopen-2022-064926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Improving lower extremity motor function is the focus and difficulty of post-stroke rehabilitation treatment. More recently, robot-assisted and virtual reality (VR) training are commonly used in post-stroke rehabilitation and are considered feasible treatment methods. Here, we developed a rehabilitation system combining robot motor assistance with neural circuit-based VR (NeuCir-VR) rehabilitation programme involving procedural lower extremity rehabilitation with reward mechanisms, from muscle strength training, posture control and balance training to simple and complex ground walking training. The study aims to explore the effectiveness and neurological mechanisms of combining robot motor assistance and NeuCir-VR lower extremity rehabilitation training in patients after stroke. METHODS AND ANALYSIS This is a single-centre, observer-blinded, randomised controlled trial. 40 patients with lower extremity hemiparesis after stroke will be recruited and randomly divided into a control group (combined robot assistance and VR training) and an intervention group (combined robot assistance and NeuCir-VR training) by the ratio of 1:1. Each group will receive five 30 min sessions per week for 4 weeks. The primary outcome will be Fugl-Meyer assessment of the lower extremity. Secondary outcomes will include Berg Balance Scale, Modified Ashworth Scale and functional connectivity measured by resting-state functional MRI. Outcomes will be measured at baseline (T0), post-intervention (T1) and follow-ups (T2-T4). ETHICS, REGISTRATION AND DISSEMINATION The trial was approved by the Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Traditional Medicine (Grant No. 2019-014). The results will be submitted to a peer-reviewed journal or at a conference. TRIAL REGISTRATION NUMBER ChiCTR2100052133.
Collapse
Affiliation(s)
- Zhi-Qing Zhou
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Jing Xu
- Guangzhou Xinhua College, Guangzhou, China
- Guangzhou Xuguan Clinic of Traditional Chinese Medicine, Guangzhou, China
| | - Meng Ren
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Meng G, Ma X, Chen P, Xu S, Li M, Zhao Y, Jin A, Liu X. Effect of early integrated robot-assisted gait training on motor and balance in patients with acute ischemic stroke: a single-blinded randomized controlled trial. Ther Adv Neurol Disord 2022; 15:17562864221123195. [PMID: 36147622 PMCID: PMC9486263 DOI: 10.1177/17562864221123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Gait disruption is a common poststroke problem. Robot-assisted gait training
(RAGT) might improve motor function, balance, and activities of daily
living. Objective: We compared the clinical effectiveness of early integrated RAGT using the
Walkbot robotic gym with an intensity-matched enhanced lower limb therapy
(ELLT) program and with conventional rehabilitation therapy (CRT) in
patients with acute ischemic stroke. Methods: A total of 192 patients with acute ischemic stroke were randomly assigned
(1:1:1) to receive RAGT, ELLT, or CRT. All three groups received 45 min of
training daily, 3 days a week, for 4 weeks consecutively. Before and after
the 4-week treatment, the patients were assessed based on a 6-minute walking
test (6MWT), functional ambulation classification (FAC), timed up and go
(TUG) test, dual-task walking (DTW) test, Tinetti’s test, Barthel’s index
(BI), stroke-specific quality of life (SS-QOL) scale, and gait analysis
parameters. Results: After the 4-week intervention, the results of the 6MWT, FAC, TUG, DTW,
Tinetti’s test, BI, SS-QOL, and gait in the three groups significantly
improved. Compared with ELLT and CRT groups, participants in the RAGT group
had a better performance in 6MWT (199.11 ± 60.72 versus
182.47 ± 59.72 versus 173.69 ± 40.58,
p = 0.035), FAC (4.10 ± 0.91 versus
3.69 ± 0.88 versus 3.58 ± 0.81,
p = 0.044), DTW (10.29 ± 2.38 versus
12.92 ± 2.64 versus 13.89 ± 2.62,
p = 0.031), SS-QOL (184.46 ± 20.53 versus
165.39 ± 20.49 versus 150.72 ± 20.59,
p = 0.012), velocity (0.66 ± 0.22 versus
0.55 ± 0.23 versus 0.51 ± 0.20,
p = 0.008), cycle duration (1.38 ± 0.40
versus 1.50 ± 0.38 versus 1.61 ± 0.30,
p = 0.040), and swing phase symmetry ratio (SPSR,
1.10 ± 0.33 versus 1.21 ± 0.22 versus
1.48 ± 0.25, p = 0.021). The TUG, Tinetti’s test, BI, and
RMT results were similar, however. Conclusion: In the acute stroke phase, early integrated RAGT showed greater performance
in gait rehabilitation than CRT and ELLT. Registration: ChiCTR1900026225
Collapse
Affiliation(s)
- Guilin Meng
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoye Ma
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Chen
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaofang Xu
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingliang Li
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yichen Zhao
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aiping Jin
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, China
| | - Xueyuan Liu
- Neurorehabilitation Center, Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yanchang Road, Shanghai 200072, China
| |
Collapse
|
28
|
Lin YN, Huang SW, Kuan YC, Chen HC, Jian WS, Lin LF. Hybrid robot-assisted gait training for motor function in subacute stroke: a single-blind randomized controlled trial. J Neuroeng Rehabil 2022; 19:99. [PMID: 36104706 PMCID: PMC9476570 DOI: 10.1186/s12984-022-01076-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Robot-assisted gait training (RAGT) is a practical treatment that can complement conventional rehabilitation by providing high-intensity repetitive training for patients with stroke. RAGT systems are usually either of the end-effector or exoskeleton types. We developed a novel hybrid RAGT system that leverages the advantages of both types. Objective This single-blind randomized controlled trial evaluated the beneficial effects of the novel RAGT system both immediately after the intervention and at the 3-month follow-up in nonambulatory patients with subacute stroke. Methods We recruited 40 patients with subacute stroke who were equally randomized to receive conventional rehabilitation either alone or with the addition of 15 RAGT sessions. We assessed lower-extremity motor function, balance, and gait performance by using the following tools: active range of motion (AROM), manual muscle test (MMT), the Fugl–Meyer Assessment (FMA) lower-extremity subscale (FMA-LE) and total (FMA-total), Postural Assessment Scale for Stroke (PASS), Berg Balance Scale (BBS), Tinetti Performance-Oriented Mobility Assessment (POMA) balance and gait subscores, and the 3-m and 6-m walking speed and Timed Up and Go (TUG) tests. These measurements were performed before and after the intervention and at the 3-month follow-up. Results Both groups demonstrated significant within-group changes in the AROM, MMT, FMA-LE, FMA-total, PASS, BBS, POMA, TUG, and 3-m and 6-m walking speed tests before and after intervention and at the 3-month follow-up (p < 0.05). The RAGT group significantly outperformed the control group only in the FMA-LE (p = 0.014) and total (p = 0.002) assessments. Conclusion Although the novel hybrid RAGT is effective, strong evidence supporting its clinical effectiveness relative to controls in those with substantial leg dysfunction after stroke remains elusive. Trial registration The study was registered with an International Standard Randomized Controlled Trial Number, ISRCTN, ISRCTN15088682. Registered retrospectively on September 16, 2016, at https://www.isrctn.com/ISRCTN15088682
Collapse
|
29
|
Yoo I. Longitudinal Impact of Community-Based Rehabilitation Programs on Functional Recovery After Stroke: A Scoping Review. HOME HEALTH CARE MANAGEMENT AND PRACTICE 2022. [DOI: 10.1177/10848223211035536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this scoping review is to guide the effects of long-term application of CBRP in stroke patients and to help make recommendations for developing treatment protocols for therapeutic application. The study examined relevant literature published between 2009 and 2020 using searches of 4 scientific databases. CBRP may have long-term effects on the functional effectiveness of stroke patients. In particular, long-term effects on walking ability and level of daily living activities have been identified. However, disease-related health conditions and quality of life were less effective in the long run. The effect decreased over time, but the long-term effect was maintained. Long-term intervention after discharge has proven to make a significant difference in the outcome of the goal. Given the potential therapeutic benefits of this process, the results of this review highlight the lack of further research to establish the effectiveness of this form of community-based long-term rehabilitation therapy for stroke patients.
Collapse
Affiliation(s)
- Ingyu Yoo
- Jeonju University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
30
|
van Dellen F, Labruyère R. Settings matter: a scoping review on parameters in robot-assisted gait therapy identifies the importance of reporting standards. J Neuroeng Rehabil 2022; 19:40. [PMID: 35459246 PMCID: PMC9034544 DOI: 10.1186/s12984-022-01017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lokomat therapy for gait rehabilitation has become increasingly popular. Most evidence suggests that Lokomat therapy is equally effective as but not superior to standard therapy approaches. One reason might be that the Lokomat parameters to personalize therapy, such as gait speed, body weight support and Guidance Force, are not optimally used. However, there is little evidence available about the influence of Lokomat parameters on the effectiveness of the therapy. Nevertheless, an appropriate reporting of the applied therapy parameters is key to the successful clinical transfer of study results. The aim of this scoping review was therefore to evaluate how the currently available clinical studies report Lokomat parameter settings and map the current literature on Lokomat therapy parameters. METHODS AND RESULTS A systematic literature search was performed in three databases: Pubmed, Scopus and Embase. All primary research articles performing therapy with the Lokomat in neurologic populations in English or German were included. The quality of reporting of all clinical studies was assessed with a framework developed for this particular purpose. We identified 208 studies investigating Lokomat therapy in patients with neurologic diseases. The reporting quality was generally poor. Less than a third of the studies indicate which parameter settings have been applied. The usability of the reporting for a clinical transfer of promising results is therefore limited. CONCLUSION Although the currently available evidence on Lokomat parameters suggests that therapy parameters might have an influence on the effectiveness, there is currently not enough evidence available to provide detailed recommendations. Nevertheless, clinicians should pay close attention to the reported therapy parameters when translating research findings to their own clinical practice. To this end, we propose that the quality of reporting should be improved and we provide a reporting framework for authors as a quality control before submitting a Lokomat-related article.
Collapse
Affiliation(s)
- Florian van Dellen
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, 8092 Zurich, Switzerland
- Swiss Children’s Rehab, University Children’s Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital of Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Rob Labruyère
- Swiss Children’s Rehab, University Children’s Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital of Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| |
Collapse
|
31
|
Zhao CG, Ju F, Sun W, Jiang S, Xi X, Wang H, Sun XL, Li M, Xie J, Zhang K, Xu GH, Zhang SC, Mou X, Yuan H. Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurol Ther 2022; 11:679-695. [PMID: 35174449 PMCID: PMC9095806 DOI: 10.1007/s40120-022-00333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/25/2022] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Stroke is always associated with a difficult functional recovery process. A brain-computer interface (BCI) is a technology which provides a direct connection between the human brain and external devices. The primary aim of this study was to determine whether training with a BCI-controlled robot can improve functions in patients with subacute stroke. METHODS Subacute stroke patients aged 32-68 years with a course of 2 weeks to 3 months were randomly assigned to the BCI group or to the sham group for a 4-week course. The primary outcome measures were Loewenstein Occupational Therapy Cognitive Assessment (LOCTA) and Fugl-Meyer Assessment for Lower Extremity (FMA-LE). Secondary outcome measures included Fugl-Meyer Assessment for Balance (FMA-B), Functional Ambulation Category (FAC), Modified Barthel Index (MBI), serum brain-derived neurotrophic factor (BDNF) levels and motor-evoked potential (MEP). RESULTS A total of 28 patients completed the study. Both groups showed a significant increase in mean LOCTA (sham: P < 0.001, Cohen's d = - 2.972; BCI: P < 0.001, Cohen's d = - 4.266) and FMA-LE (sham: P < 0.001, Cohen's d = - 3.178; BCI: P < 0.001, Cohen's d = - 3.063) scores. The LOCTA scores in the BCI group were 14.89% higher than in the sham group (P = 0.049, Cohen's d = - 0.580). There were no significant differences between the two groups in terms of FMA-B (P = 0.363, Cohen's d = - 0.252), FAC (P = 0.363), or MBI (P = 0.493, Cohen's d = - 0.188) scores. The serum levels of BDNF were significantly higher within the BCI group (P < 0.001, Cohen's d = - 1.167), and the MEP latency decreased by 3.75% and 4.71% in the sham and BCI groups, respectively. CONCLUSION Training with a BCI-controlled robot combined with traditional physiotherapy promotes cognitive function recovery, and enhances motor functions of the lower extremity in patients with subacute stroke. These patients also showed increased secretion of BDNF. TRIAL REGISTRATION Chinese clinical trial registry: ChiCTR-INR-17012874.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fen Ju
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Xi
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Wang
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun Xie
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kai Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Guang-Hua Xu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Si-Cong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Mou
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Kooncumchoo P, Namdaeng P, Hanmanop S, Rungroungdouyboon B, Klarod K, Kiatkulanusorn S, Luangpon N. Gait Improvement in Chronic Stroke Survivors by Using an Innovative Gait Training Machine: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:224. [PMID: 35010482 PMCID: PMC8750435 DOI: 10.3390/ijerph19010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Chronic stroke leads to the impairment of lower limb function and gait performance. After in-hospital rehabilitation, most individuals lack continuous gait training because of the limited number of physical therapists. This study aimed to evaluate the effects of a newly invented gait training machine (I-Walk) on lower limb function and gait performance in chronic stroke individuals. Thirty community-dwelling chronic stroke individuals were allocated to the I-Walk machine group (n = 15) or the overground gait training (control) group (n = 15). Both groups received 30 min of upper limb and hand movement and sit-to-stand training. After that, the I-Walk group received 30 min of I-Walk training, while the control followed a 30-minute overground training program. All the individuals were trained 3 days/week for 8 weeks. The primary outcome of the motor recovery of lower limb impairment was measured using the Fugl-Meyer Assessment (FMA). The secondary outcomes for gait performance were the 6-minute walk test (6 MWT), the 10-meter walk test (10 MWT), and the Timed Up and Go (TUG). The two-way mixed-model ANOVA with the Bonferroni test was used to compare means within and between groups. The post-intervention motor and sensory subscales of the FMA significantly increased compared to the baseline in both groups. Moreover, the 6 MWT and 10 MWT values also improved in both groups. In addition, the mean difference of TUG in the I-Walk was higher than the control. The efficiency of I-Walk training was comparable to overground training and might be applied for chronic stroke gait training in the community.
Collapse
Affiliation(s)
- Patcharee Kooncumchoo
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (P.K.); (P.N.); (S.H.)
- Center of Excellence in Creative Engineering Design and Development, Thammasat University, Pathumthani 12120, Thailand;
| | - Phuwarin Namdaeng
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (P.K.); (P.N.); (S.H.)
| | - Somrudee Hanmanop
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (P.K.); (P.N.); (S.H.)
| | - Bunyong Rungroungdouyboon
- Center of Excellence in Creative Engineering Design and Development, Thammasat University, Pathumthani 12120, Thailand;
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand
| | - Kultida Klarod
- Department of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand; (K.K.); (S.K.)
| | - Sirirat Kiatkulanusorn
- Department of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand; (K.K.); (S.K.)
| | - Nongnuch Luangpon
- Department of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand; (K.K.); (S.K.)
| |
Collapse
|
33
|
Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J Clin Med 2021; 10:jcm10235715. [PMID: 34884417 PMCID: PMC8658177 DOI: 10.3390/jcm10235715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to compare the effects of robotic-assisted gait training (RAGT) in patients with FAC < 2 (low initial functional ambulation category [LFAC]) and FAC ≥ 2 (high initial functional ambulation category [HFAC]) on sensorimotor and spasticity, balance and trunk stability, the number of steps and walking distance in subacute hemiparetic stroke. Fifty-seven patients with subacute hemiparetic stroke (mean age, 63.86 ± 12.72 years; 23 women) were assigned to two groups. All patients received a 30-min Walkbot-assisted gait training session, 3 times/week, for 6 weeks. Clinical outcomes included scores obtained on the Fugl-Meyer Assessment (FMA) scale, Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), trunk impairment scale (TIS), and the number of walking steps and walking distance. Analysis of covariance and analysis of variance were conducted at p < 0.05. Significant main effects of time in both groups on number of walking steps and distance (p < 0.05) were observed, but not in MAS (p> 0.05). Significant changes in FMA, BBS, and TIS scores between groups (p < 0.05) were observed. Significant main effects of time on BBS and TIS were demonstrated (p < 0.05). Our study shows that RAGT can maximize improvement in the functional score of FMA, BBS, TIS, steps, and distance during neurorehabilitation of subacute stroke patients regardless of their FAC level.
Collapse
|
34
|
Increased quality of life in patients with stroke during the COVID-19 pandemic: a matched-pair study. Sci Rep 2021; 11:10277. [PMID: 33986426 PMCID: PMC8119409 DOI: 10.1038/s41598-021-89746-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/29/2021] [Indexed: 01/13/2023] Open
Abstract
Patients with stroke are likely to experience impaired health-related quality of life (QOL), especially during the COVID-19 pandemic. This study aimed to evaluate the QOL of Chinese patients with stroke during the pandemic and explore the associated variables. A matched-pair, multicenter survey was conducted before and during the COVID-19 pandemic. Questionnaires including the 36-item Short-Form Health Survey (SF-36), the Activities of Daily Living (ADL) scale, and the Questionnaire about the Process of Recovery (QPR) were used. A total of 172 matched pairs (344 patients) were recruited in this study. Hierarchical multiple regression analysis was performed to analyze variables associated with QOL. Physical and mental component scores (PCS and MCS) were higher among the stroke patients during the pandemic (44.20 ± 18.92 and 54.24 ± 19.08) than before the pandemic (37.98 ± 14.52 and 43.50 ± 20.94). Pandemic stress, demographic and clinical characteristics were negative variables associated with PCS and MCS. QPR was positively associated with PCS and MCS. The QOL of Chinese stroke patients was higher during than before the COVID-19 pandemic. Pandemic stress aggravated stroke patients’ QOL, while personal recovery could alleviate the detrimental effect of pandemic stress on QOL for stroke patients.
Collapse
|