1
|
Kim JG, Ehsan MF, Alshawabkeh AN, Baek K. Simultaneous removal of Cr(VI), As(III), and sulfanilamide via an e-barrier electrochemical system: A pilot study. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137735. [PMID: 40024117 PMCID: PMC11999765 DOI: 10.1016/j.jhazmat.2025.137735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In-situ electrochemical remediation has emerged as a promising groundwater remediation technology. However, its application has been limited to short-term decontamination. Here, we propose an electrochemical system that combines an e-barrier with pyrite, a sulfide mineral capable of completely removing As(III), Cr(VI), and sulfanilamide continuously for one year. We evaluated the sandbox comprising an e-barrier and pyrite as a flow-through electrochemical reactor on two different scales: (1) a lab-scale small sandbox with sulfanilamide as a model contaminant to assess decontamination performance, and (2) a pilot-scale large sandbox designed for the simultaneous removal of As(III), Cr(VI), and sulfanilamide. The small sandbox achieved 100 % removal of sulfanilamide, demonstrating the effectiveness of the combined system. The large sandbox demonstrated 100 % removal efficiency against contaminants mixture for up to one year, with effluent maintaining a neutral pH even without an external neutralizing process. This remarkable performance was attributed to the activation of pyrite by anodic oxygen (O₂), producing dissolved iron that leads to the formation of iron hydroxide (e.g., green rust), which serves both as an adsorbent and precipitant for contaminants. Our findings indicated that the combination of electrochemical reactions and pyrite is an effective approach for the simultaneous removal of organic and inorganic contaminants.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Muhammad Fahad Ehsan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Kitae Baek
- Department of Environment and Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
2
|
Pathan SR, Bhende VV, Sharma KB, Chowdappa RG, Patel VA, Gangoda DM, Sharma TS. Addressing the Alarming Rise in Pediatric Cancer Prevalence in India: A Call to Action. Health Sci Rep 2025; 8:e70429. [PMID: 39931262 PMCID: PMC11808317 DOI: 10.1002/hsr2.70429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Background Childhood cancer has become a pressing global concern, impacting over 200,000 children annually, and is projected to escalate to 21 million diagnoses by 2030. This article discusses the growing incidence of pediatric cancer in India, describes the unique obstacles it faces, and encompasses a strategy for solving this pressing problem. Methods We reviewed published scientific literature and available information on cancer control and prevention programs in India. Results According to the National Cancer Registry Programme, in India, childhood cancers (0-14 years) constitute 4.0% of all cancer cases. The surge in childhood cancer cases in India mirrors a global trend, emphasizing the necessity for a comprehensive understanding of contributing factors. Pediatric oncology in India faces challenges arising from limited rural healthcare access, resulting in delayed diagnosis and treatment. Socioeconomic factors hinder specialized pediatric cancer care, accentuating the need to bridge these gaps through targeted interventions, improved infrastructure, and policies. Additionally, there are limited population-level epidemiologic studies on environmental, lifestyle, and genetic risk factors and childhood cancers. Research on genetic and environmental determinants is crucial for developing effective treatments. Addressing this requires public education, enhanced medical and research training, community-based cancer screening, and integrated medical care initiatives. Advocacy and awareness campaigns play a vital role in tackling pediatric cancer challenges, supported by grassroots initiatives and collaboration between the government and nongovernmental organizations. Conclusion Despite recent efforts by the Ministry of Health, Government of India, childhood cancer lacks a specific policy in India. Urgent collective efforts are needed to address challenges, invest in research, enhance awareness, and advocate for policy changes. It is time for healthcare professionals, policymakers, researchers, and the public to collaborate and ensure no child in India is left behind in the fight against pediatric cancer, paving the way for a healthier future for the nation's youngest members.
Collapse
Affiliation(s)
- Sohilkhan Riyazkhan Pathan
- Clinical Research Services, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Vishal Vinayak Bhende
- Department of Pediatric Cardiac Surgery, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Kruti Bharat Sharma
- Clinical Research Services, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Raghunandan Gorantlu Chowdappa
- Department of Onco‐Surgery, Manibhai Shivabhai Patel Cancer Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Vishal Ajit Patel
- Clinical Research Services, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Dinesh Maknya Gangoda
- Clinical Research Services, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| | - Tanishq Shashikant Sharma
- Department of Pediatric Cardiac Surgery, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna HospitalBhaikaka UniversityAnandGujaratIndia
| |
Collapse
|
3
|
Sultan MW, Qureshi F, Ahmed S, Kamyab H, Rajendran S, Ibrahim H, Yusuf M. A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis. ENVIRONMENTAL RESEARCH 2025; 265:120457. [PMID: 39613013 DOI: 10.1016/j.envres.2024.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
While groundwater is commonly perceived as safe, the excessive presence of trace metals, particularly arsenic (As), can pose significant health hazards. This review examines the current scenario of pollutants and their mitigations focusing on As contamination in groundwater across multiple nations, with a specific emphasis on the Indian Peninsula. Arsenic pollution surpasses the WHO limit of 10 ppb in 107 countries, impacting around 230 million people worldwide, with a substantial portion in Asia, including 20 states and four union territories in India. Analysis of the correlation between the aquifer and arsenic poisoning highlights severe contamination in groundwater originating from loose sedimentary aquifer strata, particularly in recently formed mountain ranges with geological sources presumed to contribute over 90% of arsenic pollution, i.e. a big environmental challenge. A myriad of techniques, including chromatographic, electrochemical, biological, spectroscopic, and colorimetric methods among others, are available for the detection and removal of arsenic from groundwater. Removal strategies encompass a wide array of approaches such as bioremediation, adsorption, coagulation/flocculation, ion exchange, biological processes, membrane treatment, and oxidation techniques specifically tailored for affected areas. Constructed wetlands help to eliminate heavy metal impurities such as As, Zn, Cd, Cu, Ni, Fe, and Cr. Their efficiency is influenced by design and environmental factors. Nanotechnology and nanoparticles have recently been studied to remove arsenic and toxic metal ions from water. Cost-effective solutions including community-based mitigation initiatives, alongside policy and regulatory frameworks addressing arsenic contamination, are essential considerations.
Collapse
Affiliation(s)
| | - Fazil Qureshi
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Salman Ahmed
- Interdisciplinary Department of Remote Sensing and GIS Applications, Aligarh Muslim University, Aligarh 202002, India
| | - Hesam Kamyab
- UTE University, Faculty of Architecture and Urbanism, Architecture Department, TCEMC Investigation Group, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Hussameldin Ibrahim
- Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| |
Collapse
|
4
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
5
|
Panday DP, Kumar M, Agarwal V, Torres-Martínez JA, Mahlknecht J. Corroboration of arsenic variation over the Indian Peninsula through standardized precipitation evapotranspiration indices and groundwater level fluctuations: Water quantity indicators for water quality prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176339. [PMID: 39299312 DOI: 10.1016/j.scitotenv.2024.176339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The contamination of groundwater with arsenic (As) as a result of geo-morphological and hydrogeochemical factors has been the subject of comprehensive research. However, there has been limited exploration of the spread of As under the influence of dynamic elements such as floods, droughts, and rapidly declining groundwater levels. Moreover, the utilization of rapidly changing natural forces, including hydroclimatic extremes and declining groundwater levels, in conjunction with standard climate indices such as the Standard Precipitation Index (SPI) and the Standard Precipitation Evapotranspiration Index (SPEI), for the purpose of elucidating As distribution has been minimal. Accordingly, this study specifically addresses these water quantity indicators, along with Gravity Recovery and Climate Experiment (GRACE) derived groundwater levels, to expound on As contamination at a Pan-Indian scale. Significant correlations were delineated between SPI, SPEI, GRACE-derived groundwater levels, and arsenic concentrations. Clustering results unveiled the grouping of states according to agro-climatic zones, thereby underscoring the similarities in water quantity dynamics across the Indian peninsula. The study additionally computed the Saturation Index (SI) for aragonite and deliberated on the potential future saturation of this pivotal mineral. The primary contribution of this study lies in the successful demonstration of a methodology for prognosticating As distribution based on available precipitation and climatic indices, groundwater withdrawal, and the geological prospects of agroclimatic zones. The insights derived from the analysis of SPI, GRACE data, and As concentrations furnish valuable input for water resource management vis-à-vis strategies for mitigating As contamination.
Collapse
Affiliation(s)
- Durga Prasad Panday
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India.
| | - Vivek Agarwal
- Engineering and Environment, Northumbria University, Newcastle, UK
| | - Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
6
|
Subramaniyan A, Ganesan S. Human health risk and water quality assessment due to fluoride and nitrate around Cauvery River basin, southern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:880. [PMID: 39223339 DOI: 10.1007/s10661-024-12985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Good quality water for human consumption, irrigation, and industrial use is very important. Today, around the world, water is contaminated by natural processes and human activities. This study aimed to evaluate the suitability of groundwater for drinking and irrigation, identify the source of fluoride and nitrate contamination, and assess the human health risks around the Cauvery River basin in southern India. A total of 30 groundwater samples were collected and analyzed for hydrochemical parameters, including EC, TDS, pH, Ca, Mg, Na, K, HCO3, Cl, SO4, NO3, and F-. The majority of groundwater samples in the study area are used for drinking and irrigation. The pH of groundwater in the study area was observed to be dominantly alkaline. The levels of TDS, Ca, Na, K, F, and TH exceeded the permissible limits recommended by BIS and WHO. Fluoride and nitrate levels in groundwater exceeded the permissible limits for drinking purposes in 43% and 50% of the samples, respectively. The excessive concentration of fluoride and nitrate in groundwater could pose serious human health problems. Fluoride and nitrate concentrations in groundwater vary between 0.1 and 2 mg/l and 12 and 95 mg/l, respectively. Based on the computation of the drinking water quality index, about 73% of groundwater samples were classified as excellent to good. Health risk was assessed for infants, children, and adults using non-carcinogenic risk indices such as hazard quotients (HQ), hazard indexes (HI), total hazard indices (THI), and carcinogenic risk indices (CR). Infants, children, and adults have different total hazards indexes ranging from 1.508 to 5.733, 1.579 to 6.003, and 0.011 to 0.046, respectively. Health risk assessment results indicated that the hazard index and hazard quotient were above the recommended limit of > 1 in most of the samples for infants and children. Non-carcinogenic risk and carcinogenic risks were more likely to affect infants and children rather than adults through ingestion of contaminated water.
Collapse
Affiliation(s)
- Anbarasu Subramaniyan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, 411008, Maharashtra, India.
| | - Selvam Ganesan
- Department of Geology, National College, Trichy, 620001, Tamil Nadu, India
| |
Collapse
|
7
|
Moniruzzaman M, Asad HA, Sarker AK, Bhuiyan MAQ, Ahsan MA, Majumder RK, Hassan HB. Hydrogeochemical appraisal, sources, quality and potential health risk assessment in Holocene and Pleistocene aquifers in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50261-50282. [PMID: 39088177 DOI: 10.1007/s11356-024-34510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
This study integrated hydrochemical analysis, isotopic analysis, the integrated water quality index (IWQI), and the health risk assessment model to analyze hydrochemical characteristics, quality, and nitrate health risks in a typical agricultural and industrial (i.e., Holocene and Pleistocene) simultaneously affected by anthropogenic activities, as well as to explore the recharge mechanisms of the groundwater. The shallow groundwater is mainly Ca-HCO3- and deep groundwater is mainly Na-HCO3- types. In shallow and intermediate aquifers (Holocene), rainfall recharge is seen, but in deep aquifers (Holocene) and the Madhupur tract (Pleistocene), there is no evidence of recent recharge from the stable isotopic (δ2H‰ and δ18O‰) composition of groundwater. Anthropogenic sources significantly impacted the groundwater chemistry of shallow and intermediate aquifers more than geogenic sources. Most metalloids, and metals (As, and Cr, Fe, Ni, Pb, and Mn) and NO3- exceed the WHO-2011 and BD acceptable limit from shallow and intermediate groundwater. PCA analysis revealed the contamination of shallow and intermediate aquifers by metalloids, metals and from various anthropogenic activities. Based on the IWQI, HPI, HEI, and DC, groundwater samples from shallow and intermediate aquifers are unsuitable for oral consumption. The NPI shows that the metalloids, and metals are responsible for groundwater pollution in a descending order of As > Fe > Pb > Ni > Cr > Mn. Health risk assessment indicates oral and dermal consumption of contaminated water from shallow and intermediate aquifers can pose carcinogenic and non-carcinogenic health risks for both the adults and the children. The HQ and HI values of shallow and intermediate groundwater indicates higher non-carcinogenic risk. Carcinogenic risk through oral and dermal consumption follows an order of As > Ni > Cr > Pb and Ni > Cr > As > Pb, respectively. Compared to adults, children are more susceptible to both carcinogenic and non-carcinogenic risks. Potential threats to the health of people living in the study region need immediate attention from the public, government, and the scientific community.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka, 1349, Bangladesh.
| | - Hafiz Al- Asad
- Department of Chemistry, Mawlana Bhashani Science & Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Ashis Kumar Sarker
- Department of Chemistry, Mawlana Bhashani Science & Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Abdul Quaiyum Bhuiyan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka, 1349, Bangladesh
| | - Md Ariful Ahsan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka, 1349, Bangladesh
| | - Ratan Kumar Majumder
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka, 1349, Bangladesh
| | - Hazzaz Bin Hassan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| |
Collapse
|
8
|
Ganguly A, Nag S, Bhowmick TK, Gayen K. Phycoremediation of As(III) and Cr(VI) by Desmodesmus subspicatus: Impact on growth and biomolecules (carbohydrate, protein, chlorophyll and lipid) - A dual mode investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48545-48560. [PMID: 39031311 DOI: 10.1007/s11356-024-34390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are under research focus for the simultaneous production of biomolecules (e.g., carbohydrates, proteins, pigments and lipids) and bioremediation of toxic substances from wastewater. The current study explores the capability of indigenously isolated microalgae (Desmodesmus subspicatus) for the phycoremediation of As(III) and Cr(VI). Variation of biomolecules (carbohydrate, protein, lipid and chlorophyll) was investigated during phycoremediation. D. subspicatus survived up to the toxicity level of 10 mg/L for As(III) and 0.8 mg/L for Cr(VI). A 70% decline in carbohydrate accumulation was observed at 10 mg/L of As(III). An increased content of proteins (+ 28%) and lipids (+ 32%) within the cells was observed while growing in 0.5 and 0.2 mg/L of As(III) and Cr(VI) respectively. A decrease in carbohydrate accumulation was noted with increasing Cr(VI) concentration, and the lowest (- 44%) was recorded at 0.8 mg/L Cr(VI). D. subspicatus showed an excellent maximum removal efficiency for Cr(VI) and As(III) as 77% and 90% respectively.
Collapse
Affiliation(s)
- Anisha Ganguly
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Soma Nag
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India.
| |
Collapse
|
9
|
Nandi R, Mondal S, Mandal J, Bhattacharyya P. From fuzzy-TOPSIS to machine learning: A holistic approach to understanding groundwater fluoride contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169323. [PMID: 38104806 DOI: 10.1016/j.scitotenv.2023.169323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Fluoride (F-) contamination of groundwater is a prevalent environmental issue threatening public health worldwide and in India. This study targets an investigation into spatial distribution and contamination sources of fluoride in Dhanbad, India, to help develop tailored mitigation strategies. A triad of Multi Criteria Decision Making (MCDM) models (Fuzzy-TOPSIS), machine learning algorithms {logistic regression (LR), classification and regression tree (CART), Random Forest (RF)}, and classical methods has been undertaken here. Groundwater samples (n = 283) were collected for the purpose. Based on permissible limit (1.5 ppm) of fluoride in drinking water as set by the World Health Organization, samples were categorized as Unsafe (n = 67) and Safe (n = 216) groups. Mean fluoride concentration in Safe (0.63 ± 0.02 ppm) and Unsafe (3.69 ± 0.3 ppm) groups differed significantly (t-value = -10.04, p < 0.05). Physicochemical parameters (pH, electrical conductivity, total dissolved solids, total hardness, NO3-, HCO3-, SO42-, Cl-, Ca2+, Mg2+, K+, Na+ and F-) were recorded from samples of each group. The samples from 'Unsafe group' showed alkaline pH, the abundance of Na+ and HCO3- ions, prolonged rock water interaction in the aquifer, silicate weathering, carbonate dissolution, lack of Ca2+ and calcite precipitation which together facilitated the F- abundance. Aspatial distribution map of F- contamination was created, pinpointing the "contaminated pockets." Fuzzy- TOPSIS identified that samples from group Safe were closer to the ideal solution. Among these models, the LR proved superior, achieving the highest AUC score of 95.6 % compared to RF (91.3 %) followed by CART (69.4 %). This study successfully identified the primary contributors to F- contamination in groundwater and the developed models can help predicting fluoride contamination in other areas. The combination of different methodologies (Fuzzy-TOPSIS, machine learning algorithms, and classical methods) results in a synergistic effect where the strengths of each approach compensate for the limitations of the other.
Collapse
Affiliation(s)
- Rupsha Nandi
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Sandip Mondal
- Department of Plant Pathology, The Ohio State University, OH, Columbus 43210, USA
| | - Jajati Mandal
- School of Sciences, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India.
| |
Collapse
|
10
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Guo J, Wang D, Shi Y, Lyu H, Tang J. Minor chromium passivation of S-ZVI enhanced the long-term dechlorination performance of trichlorethylene: Effects of corrosion and passivation on the reactivity and selectivity. WATER RESEARCH 2024; 249:120973. [PMID: 38071903 DOI: 10.1016/j.watres.2023.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
The corrosion and surface passivation of sulfidized zero-valent iron (S-ZVI) by common groundwater ions and contaminants are considered to be the most challenging aspects in the application of S-ZVI for remediation of chlorinated contaminants. This study investigated the impacts of corrosive chloride (Cl-) and passivation of hexavalent chromium (Cr(VI)) on the long-term reactivity, selectivity, corrosion behavior, and physicochemical properties during the 60-day aging process of S-ZVI. Although the co-existing of Cl- promoted the initial reactivity of S-ZVI, the rapid consumption of Fe° content shortened the reactive lifetime owing to the insufficient electron capacity. Severe passivation by Cr(VI) (30 mg L-1) preserved the Fe° content but significantly interfered with the reductive sulfur species, resulting in an increase in electron transfer resistance. In comparison, minor passivated S-ZVI (5.0 mg L-1 Cr(VI)) inhibited the hydrogen evolution while concurrently mitigating the further oxidation of the reductive iron and sulfur species, which significantly enhanced the long-term reactivity and selectivity of S-ZVI. Furthermore, the enhancement effect of minor passivation could be detected in the aging processes of one-step, two-step, and mechanochemically synthesized S-ZVI particles with different S/Fe ratios and precursors, which further verified the advantages of minor passivation. This observation is inspirable for the development of innovative strategies for environmental remediation by S-ZVI-based materials.
Collapse
Affiliation(s)
- Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dong Wang
- Environmental Protection Institute, SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Bhattacharya M, Barbhuiya NH, Singh SP. Performance evaluation of sulfidated nanoscale iron for hexavalent chromium removal from groundwater in sequential batch study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123055-123066. [PMID: 37979111 DOI: 10.1007/s11356-023-30960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Chromium [Cr] contamination in groundwater is one of the serious environmental concerns due to the carcinogenicity of its water-soluble and mobile hexavalent [Cr(VI)] form. In spite of the existence of multiple precipitation and adsorption-based Cr(VI) remediation technologies, the usage of sulfidated nano zerovalent iron (S-nZVI) has recently attracted researchers due to its high selectivity. Although S-nZVI effectively immobilized Cr(VI), its long-term performance in multiple shifted equilibrium has not been explored. In this contribution, influences of S-nZVI dosage, initial concentration of Cr(VI), pH, ionic strength, total hardness, sulfate, carbonate, and silicate were probed in ultrapure water. Further experiments were performed in synthetic groundwater to investigate the effects of initial concentration of Cr(VI) in the pH range of 4-8 for 1 g L-1 S-nZVI dosage. Cr(VI) removal rate was quantified in groundwater without pH fixation. Finally, a comparative study between conventional nano zerovalent iron (nZVI) and S-nZVI was conducted in sequential batch reactors to investigate their respective efficiencies during repeated usage. Mechanistic interpretation of the processes governing the immobilization of Cr(VI) was done by integrating the results of these experiments with the metadata. While aggregation due to magnetic properties and rapid oxidation of Fe decreased the efficiency of nZVI with repeated usage, sulfidation minimized the passivation and favored an extended reducing environment because of continuous electron transfer from iron and sulfur components.
Collapse
Affiliation(s)
- Mainak Bhattacharya
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul Haque Barbhuiya
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
13
|
Malik A, Katyal D, Narwal N, Kataria N, Ayyamperumal R, Khoo KS. Sources, distribution, associated health risks and remedial technologies for inorganic contamination in groundwater: A review in specific context of the state of Haryana, India. ENVIRONMENTAL RESEARCH 2023; 236:116696. [PMID: 37482126 DOI: 10.1016/j.envres.2023.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Haryana is one of the leading states in India in the agricultural and industrial production. With the expansion of these sectors, a continuous increase in water demand is leading to water crises arising from overexploitation and quality deterioration of the available water. Contamination of aquifer resources is a significant concern, because majority of population depends on the groundwater for various agricultural, industrial, and domestic needs. This review article provides an overview of groundwater contamination, associated health risks with different contaminants with regions severely affected by poor water quality, and delves in identifying the sources, by observing and recognising the types of industries dominant in the state with types of effluents discharge. It further suggests the possible mitigation measures such as advanced remedial technologies and proper management practices from the consequent contamination sources. It has been observed during the perusal of various studies and data that the degree of contamination was considerably higher in districts with heavy agro-industrial activities. The groundwater resources in three highly industrialized districts were found to be gravely contaminated with toxic heavy metals. Alongwith heavy metals, the salinity, hardness, nitrate, and fluoride are also posing significant problems in the aquifer resources of Haryana state. The article also discusses various technologies for remediation of different pollutants from groundwater so it can be made potable after treatment.
Collapse
Affiliation(s)
- Aastha Malik
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | | | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
14
|
Ullah Z, Rashid A, Ghani J, Talib MA, Shahab A, Lun L. Arsenic Contamination, Water Toxicity, Source Apportionment, and Potential Health Risk in Groundwater of Jhelum Basin, Punjab, Pakistan. Biol Trace Elem Res 2023; 201:514-524. [PMID: 35171408 DOI: 10.1007/s12011-022-03139-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023]
Abstract
Potable groundwater (GW) contamination through arsenic (As) is a commonly reported environmental issue in Pakistan. In order to examine the groundwater quality for As contamination, its geochemical behavior, and other physicochemical parameters, 69 samples from various groundwater sources were collected from the mining area of Pind Dadan Khan, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and linked public health risk. Arsenic detected in the groundwater samples varied from 0.5 to 100 µg/L, with an average value of 21.38 µg/L. Forty-two samples were beyond the acceptable limit of 10 µg/L of the WHO for drinking purposes. The statistical summary showed that the groundwater cation concentration was in decreasing order such as Na+ > Ca2+ > Mg2+ > K+, while anions were as follows: HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies results depicted that groundwater samples belong to CaHCO3 type. Rock-water interactions control the hydrochemistry of groundwater. Saturation indices' results indicated the saturation of the groundwater sources for CO3 minerals due to their positive SI values. Such minerals include aragonite, calcite, dolomite, and fluorite. The principal component analysis (PCA) findings possess a total variability of 77.36% suggesting the anthropogenic and geogenic contributing sources of contaminant. The results of the Exposure-health-risk-assessment model for measuring As reveal significant potential carcinogenic risk exceeding the threshold level (value > 10-4) and HQ level (value > 1.0).
Collapse
Affiliation(s)
- Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Junaid Ghani
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Muhammad Afnan Talib
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
15
|
Saha A, Pal SC, Chowdhuri I, Roy P, Chakrabortty R. Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120203. [PMID: 36150620 DOI: 10.1016/j.envpol.2022.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., "RF-particle swarm optimization (PSO)", "RF-grey wolf optimizer (GWO)" and "RF-grasshopper optimization algorithm (GOA)", to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.
Collapse
Affiliation(s)
- Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| | - Indrajit Chowdhuri
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Paramita Roy
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Rabin Chakrabortty
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| |
Collapse
|
16
|
Mohammadpour A, Zarei AA, Dehbandi R, Khaksefidi R, Shahsavani E, Rahimi S, Elshall AS, Azhdarpoor A. Comprehensive assessment of water quality and associated health risks in an arid region in south Iran. Regul Toxicol Pharmacol 2022; 135:105264. [PMID: 36152980 DOI: 10.1016/j.yrtph.2022.105264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2022]
Abstract
This study aims at investigating the quality of drinking water and evaluating the non-carcinogenic risk of fluoride and nitrate ions in drinking water, and fluoride in tea in Zarrin Dasht, Iran. We focus on tea since it is the most popular drink among Iranian people and in the study region. We collected and analyzed 23 drinking water samples and 23 tea samples from different locations in the study region. Based on the water quality index, the consumed drinking water does not have a good quality in most Zarrin Dasht areas. Accordingly, the water quality index (WQI) is poor and very poor in 70% and 13% of the water samples, respectively. The average fluoride concentration of the tea samples is 2.71 mg/L. The mean values of Fluoride Hazard Index (HIfluoride) are 3.77, 2.77, and 2.33 for children, teenagers, and adults, respectively, which are higher than the safe limit of 1. The Nitrate Hazard Index (HInitrate) is higher than the safe limit of 1 in 8.7% of the samples. The results of the Monte Carlo simulation demonstrate that HIfluoride and HInitrate are higher than 1 in all the groups, except for adults. According to the results of the sensitivity analysis, ingestion rate and body weight have a large effect on HIfluoride and HInitrate, but body weight is inversely associated with sensitivity. According to the Piper diagram, saline water is the predominant type in Zarrin Dasht. Besides, the results of the principal component analysis (PCA) show a high correlation between fluoride and pH, which could be related to the effect of pH on fluoride dissolution and ion exchange. Therefore, appropriate measures are recommended to be taken in order to reduce the amount of fluoride in the drinking water resources of this region. Reduction of tea consumption can also be considered an important factor in decreasing the amount of fluoride intake.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Allah Zarei
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razyeh Khaksefidi
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Shahsavani
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Sajad Rahimi
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahmed S Elshall
- Department of Bioengineering, Civil Engineering, and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL, USA; The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Ekanayake A, Rajapaksha AU, Selvasembian R, Vithanage M. Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media. ENVIRONMENTAL RESEARCH 2022; 211:113073. [PMID: 35283075 DOI: 10.1016/j.envres.2022.113073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The objectives of the study were to evaluate and compare the efficacy of hexavalent chromium (Cr(VI)) removal by amino-modified (HDA-MPBC) and pristine biochar (MPBC) derived from an invasive plant Mimosa pigra. Prepared biochars were characterized and batch experiments were conducted to check the performance and the mechanisms of Cr(VI) removal. FTIR spectra revealed that the surface of HDA-MPBC is abundant with amino functional groups which was further confirmed by XPS analysis. The highest Cr(VI) removal for both HDA-MPBC (76%) and MPBC (62%) was observed at pH 3.0. The batch sorption data were well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model, suggesting the involvement of both physisorption and chemisorption mechanisms for Cr(VI) removal. X-ray photoelectron spectroscopy studies showed that both Cr(VI) and Cr(III) were presented at the modified biochar surface after adsorption. These results indicated that the electrostatic attraction of Cr(VI) coupled with reduction of Cr(VI) to Cr(III) and complexation of Cr(III) ions with functional groups on HDA-MPBC as the most plausible mechanism for removal of Cr(VI) by modified biochar. Regeneration experiment concluded that adsorbed Cr(VI) onto the surface of HDA-MPBC had the least tendency of being desorbed in basic conditions. HDA-MPBC showed a high performance in adsorptive removal of Cr(VI) compared to pristine biochar signifying the amino modification to enhance adsorption performance of biochar in Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
18
|
Wu M, Cao H, Lu G, Hu BX, Cheng Z, Mo C, Wu J, Wu J. Effects of nanometer alumina and humic acid on the retention and transport of hexavalent chromium in porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113005. [PMID: 34839141 DOI: 10.1016/j.ecoenv.2021.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Column experiments were conducted to investigate the effects of ion type, ion strength, humic acid (HA), and nanometer alumina (NA) particles on the transport of hexavalent chromium (HC) in saturated porous media. A one-dimensional model is developed to simulate the migration of HC affected by NA particles. The results show that nano-alumina particles would enhance the mobility of HC in saturated porous media. However, the influence of NA on the migration of HC in porous media is complex. When the concentration of NA reaches 30 mg/L, HC has minimum retention parameter and best mobility. The transport of HC also is affected by ion strength and ion type. Higher ionic strength would decrease the retention of HC and enhance its mobility. Compared with sodium ion, calcium ion has larger effects on the transport of HC. Moreover, HA can improve the mobility of HC in saturated porous media, but the corresponding promoting effect decreases with the increase of HA concentration. As nanometer contaminants and HC come into the subsurface environment, findings from this study elucidate the key factors and processes controlling the transport of HC in porous media, which can promote the prediction and assessment of HC in the groundwater system.
Collapse
Affiliation(s)
- Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Huihui Cao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Tofighi FB, Saadati A, Kholafazad-Kordasht H, Farshchi F, Hasanzadeh M, Samiei M. Electrochemical immunoplatform to assist in the diagnosis of oral cancer through the determination of CYFRA 21.1 biomarker in human saliva samples: Preparation of a novel portable biosensor toward non-invasive diagnosis of oral cancer. J Mol Recognit 2021; 34:e2932. [PMID: 34472146 DOI: 10.1002/jmr.2932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
In this study, a novel, low-cost, and flexible paper-based electrochemical immunosensor was developed for the bioanalysis of Cyfra 21.1 biomarker in human saliva samples by using stabilization of synthesis Ag nano-ink on the surface of paper using pen-on-paper technology. The employed electrochemical techniques for the evaluation of immunoplatform performance were differential pulse voltammetry and chronoamperometry. Also, the prepared immunosensor showed great ability in the determination of Cyfra21.1 in human saliva specimens. Under the optimized conditions, the obtained linear range was from 0.0025 to 10 ng/mL, and the obtained LLOQ was 0.0025 ng/mL. The developed immunosensor is easy to prepare, sensitive, cost-effective, portable, and simple. So proposed immunoplatform can be an accomplished biodevice in clinical laboratories. The proposed paper-based immunosensor could be a hopefully new and cheap tool for the diagnosis of other biomarkers. Also, the prepared immunosensor showed great ability in the determination of Cyfra21.1 biomarker in human saliva specimens.
Collapse
Affiliation(s)
- Fahimeh Bageri Tofighi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Farshchi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|