1
|
Setu MAA, Das PK, Ahammed T, Saha S, Hasan A, P. K. SK, Das S, Ahamed T, Hossain KMA, Al-Emran HM, Hossain MA, Jahid IK. Dengue Virus Serotype 2 Cosmopolitan C Genotype Reemerges With a New Strain in Southwest Region of Bangladesh. Transbound Emerg Dis 2025; 2025:8275099. [PMID: 40302743 PMCID: PMC12016812 DOI: 10.1155/tbed/8275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 05/02/2025]
Abstract
In 2023, the dengue virus (DENV) outbreak infected over 0.3 million cases and 1500 deaths in Bangladesh. Our study conducted serotyping and genomic surveillance in four districts of Southwest Bangladesh between September and October 2023. The surveillance data from 2019 to 2023 extracted from the Directorate General of Health Services in Bangladesh indicated a significant increase of Dengue infections in 2023, particularly during September-November. The two-layered hypothesis examination confirmed that, despite endemic months, 2023 dengue outbreak had a higher morbidity rate compared to previous years (2019-2022) in the southwest of Bangladesh. Serotyping using RT-PCR and E gene sequence analysis of 25 randomly selected positive samples reveals that DENV-2 was the dominant serotype circulating in this region during the study period. Genomic analysis (phylogenetic analysis and classical multidimensional scaling [cMDS]) exposed a new strain of DENV-2, classified under Cosmopolitan genotype within C clade, distinct from previous Bangladeshi strains until 2022. This strain, possibly migrating from India, might have emerged during the COVID-19 pandemic years and exhibited higher morbidity rates, thus challenging our existing mitigation strategies. This investigation provides valuable insights for public health interventions and underscores the importance of continuous genomic surveillance in managing dengue outbreaks.
Collapse
Affiliation(s)
- Md. Ali Ahasan Setu
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Prosanto Kumar Das
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Toukir Ahammed
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shuvo Saha
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Adib Hasan
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shishir Kumar P. K.
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Das
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tanvir Ahamed
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - K. M. Amran Hossain
- Department of Physiotherapy and Rehabilitation, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hassan M. Al-Emran
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Biomedical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Anwar Hossain
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
- Genome Centre, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Tariq A, Khan A, Mutuku F, Ndenga B, Bisanzio D, Grossi-Soyster EN, Jembe Z, Maina P, Chebii P, Ronga C, Okuta V, LaBeaud AD. Understanding the factors contributing to dengue virus and chikungunya virus seropositivity and seroconversion among children in Kenya. PLoS Negl Trop Dis 2024; 18:e0012616. [PMID: 39565798 PMCID: PMC11578454 DOI: 10.1371/journal.pntd.0012616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are causes of endemic febrile disease among Kenyan children. The exposure risk to these infections is highly multifactorial and linked to environmental factors and human behavior. We investigated relationships between household, socio-economic, demographic, and behavioral risk factors for DENV and CHIKV seropositivity and seroconversion in four settlements in Kenya. We prospectively followed a pediatric cohort of 3,445 children between 2014-2018. We utilized the Kaplan-Meier curves to describe the temporal patterns of seroconversion among tested participants. We employed logistic regression built using generalized linear mixed models, to identify potential exposure risk factors for DENV and CHIKV seroconversion and seropositivity. Overall, 5.2% children were seropositive for DENV, of which 59% seroconverted during the study period. The seroprevalence for CHIKV was 9.2%, of which 54% seroconverted. The fraction of seroconversions per year in the study cohort was <2% for both viruses. Multivariable analysis indicated that older age and the presence of water containers ((OR: 1.15 [95% CI: 1.10, 1.21]), (OR: 1.50 [95% CI: 1.07, 2.10])) increased the odds of DENV seropositivity, whereas higher wealth (OR: 0.83 [95% CI: 0.73, 0.96]) decreased the odds of DENV seropositivity. Multivariable analysis for CHIKV seropositivity showed older age and the presence of trash in the housing compound to be associated with increased odds of CHIKV seropositivity ((OR: 1.11[95% CI: 1.07, 1.15]), (OR: 1.34 [95% CI: 1.04, 1.73])), while higher wealth decreased the odds of CHIKV seropositivity (OR: 0.74[95% CI: 0.66, 0.83]). A higher wealth index (OR: 0.82 [95% CI: 0.69, 0.97]) decreased the odds of DENV seroconversion, whereas a higher age (OR: 1.08 [95% CI: 1.02, 1.15]) and the presence of water containers in the household (OR: 1.91[95% CI: 1.24, 2.95]) were significantly associated with increased odds of DENV seroconversion. Higher wealth was associated with decreased odds for CHIKV seroconversion (OR: 0.75 [95% CI: 0.66, 0.89]), whereas presence of water containers in the house (OR: 1.57 [95% CI: 1.11, 2.21]) was a risk factor for CHIKV seroconversion. Our study links ongoing CHIKV and DENV exposure to decreased wealth and clean water access, underscoring the need to combat inequity and poverty and further enhance ongoing surveillance for arboviruses in Kenya to decrease disease transmission. The study emphasizes the co-circulation of DENV and CHIKV and calls for strengthening the targeted control strategies of mosquito borne diseases in Kenya including vector control, environmental management, public education, community engagement and personal protection.
Collapse
Affiliation(s)
- Amna Tariq
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Aslam Khan
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Donal Bisanzio
- RTI International, Washington, D.C, United States of America
| | - Elysse N. Grossi-Soyster
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Zainab Jembe
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Priscilla Maina
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Philip Chebii
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Charles Ronga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Victoria Okuta
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
3
|
Chathurangika P, Perera SSN, De Silva SAK. Estimating dynamics of dengue disease in Colombo district of Sri Lanka with environmental impact by quantifying the per-capita vector density. Sci Rep 2024; 14:24629. [PMID: 39428492 PMCID: PMC11491478 DOI: 10.1038/s41598-024-76176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Dengue is a vector-borne disease transmitted to humans by vectors of genus Aedes causing a global threat to health, social, and economic sectors in many of the tropical countries including Sri Lanka. In Sri Lanka, the tropical climate, marked by seasonal weather primarily influenced by monsoons, fosters optimal conditions for the virus to spread efficiently. This heightened transmission results in increased per-capita vector density. In this work, we investigate the dynamic influence of environmental conditions on dengue emergence in Colombo district - the geographical region with the highest recorded dengue threat in Sri Lanka. An iterative approach is employed to dynamically estimate dengue cases leveraging the Markov chain Monte Carlo simulations, utilizing the dynamics of four seasons per year influenced by monsoon weather patterns governing in the region. The developed algorithm allows to estimate the risk of dengue outbreaks in 2017 and 2019 with high precision, facilitating accurate forecasts of upcoming disease emergence patterns for better preparedness. The uncertainty quantification not only validated the accuracy of outbreak estimates but also showcased the model's capacity to capture extreme cases and revealed undisclosed external factors such as human mobility and environmental pollution that might affect dengue transmission in the Colombo district of Sri Lanka.
Collapse
Affiliation(s)
- Piyumi Chathurangika
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, Colombo, 00030, Sri Lanka
| | - S S N Perera
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, Colombo, 00030, Sri Lanka
| | - S A Kushani De Silva
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, Colombo, 00030, Sri Lanka.
| |
Collapse
|
4
|
Otero J, Tabares A, Santos-Vega M. Exploring Dengue Dynamics: A Multi-Scale Analysis of Spatio-Temporal Trends in Ibagué, Colombia. Viruses 2024; 16:906. [PMID: 38932198 PMCID: PMC11209037 DOI: 10.3390/v16060906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024] Open
Abstract
Our study examines how dengue fever incidence is associated with spatial (demographic and socioeconomic) alongside temporal (environmental) factors at multiple scales in the city of Ibagué, located in the Andean region of Colombia. We used the dengue incidence in Ibagué from 2013 to 2018 to examine the associations with climate, socioeconomic, and demographic factors from the national census and satellite imagery at four levels of local spatial aggregation. We used geographically weighted regression (GWR) to identify the relevant socioeconomic and demographic predictors, and we then integrated them with environmental variables into hierarchical models using integrated nested Laplace approximation (INLA) to analyze the spatio-temporal interactions. Our findings show a significant effect of spatial variables across the different levels of aggregation, including human population density, gas and sewage connection, percentage of woman and children, and percentage of population with a higher education degree. Lagged temporal variables displayed consistent patterns across all levels of spatial aggregation, with higher temperatures and lower precipitation at short lags showing an increase in the relative risk (RR). A comparative evaluation of the models at different levels of aggregation revealed that, while higher aggregation levels often yield a better overall model fit, finer levels offer more detailed insights into the localized impacts of socioeconomic and demographic variables on dengue incidence. Our results underscore the importance of considering macro and micro-level factors in epidemiological modeling, and they highlight the potential for targeted public health interventions based on localized risk factor analyses. Notably, the intermediate levels emerged as the most informative, thereby balancing spatial heterogeneity and case distribution density, as well as providing a robust framework for understanding the spatial determinants of dengue.
Collapse
Affiliation(s)
- Julian Otero
- Centro Para los Objetivos de Desarrollo Sostenible, Universidad de Los Andes, Bogotá 111711, Colombia
- Grupo Biología Matemática y Computacional (BIOMAC), Universidad de Los Andes, Bogotá 111711, Colombia;
| | - Alejandra Tabares
- Departamento de Ingeniería Industrial, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Mauricio Santos-Vega
- Grupo Biología Matemática y Computacional (BIOMAC), Universidad de Los Andes, Bogotá 111711, Colombia;
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Padhi BK, Khatib MN, Gaidhane S, Zahiruddin QS, Satapathy P, Rabaan AA, Alrasheed HA, Al-Subaie MF, Alfaresi M, Zaidan TI. Association of cardiovascular disease with severe dengue: A systematic review and meta-analysis. Curr Probl Cardiol 2024; 49:102346. [PMID: 38103821 DOI: 10.1016/j.cpcardiol.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) and dengue are both significant global health concerns, and their intersection presents a growing clinical challenge. Emerging evidence suggests that individuals with pre-existing CVD may face an elevated risk of severe dengue outcomes. The present study aims to perform a systematic review to assess the relationship between CVD and the severity of dengue. METHODS We conducted a literature search across multiple databases from inception to November 25, 2023. Primary studies reporting the number of dengue patients with CVD in severe dengue and non-severe dengue groups were included. Quality assessment was performed using the Newcastle-Ottawa Scale, and a meta-analysis was conducted using R software version 4.2 to determine the pooled Relative Risk (RR). The study protocol has been registered in PROSPERO. RESULTS Based on data from 5 studies involving 274,576 dengue patients, our meta-analysis revealed a significant association between CVD and an increased risk of severe dengue, with a calculated RR of 2.71 (95 % CI: 1.03 to 7.10). However, substantial heterogeneity was observed among the included studies (I2 = 79 %). CONCLUSION The current evidence suggests an association between CVD and severe dengue, emphasizing the importance of closely monitoring individuals with pre-existing cardiovascular disease and providing them with targeted interventions upon dengue diagnosis to mitigate the risk of severe outcomes.
Collapse
Affiliation(s)
- Bijaya Kumar Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- Global Health Academy, Division of Evidence Synthesis, School of Epidemiology and Public Health and Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher education and Research, Wardha, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248001, India; School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, 133, Riyadh, 13328Saudi Arabia
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi 92323, United Arab Emirates; Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Tasneem I Zaidan
- Pediatric infectious diseases Unit, Pediatric department, King Abdulaziz Hospital, Jeddah 23831, Saudi Arabia
| |
Collapse
|
6
|
Annan E, Lubinda J, Treviño J, Messer W, Fonseca D, Wang P, Pilz J, Lintner B, Angulo-Molina A, Gallego-Hernández AL, Haque U. A Maximum Entropy Model of the Distribution of Dengue Serotype in Mexico. Transbound Emerg Dis 2023; 2023:3823879. [PMID: 40303721 PMCID: PMC12016891 DOI: 10.1155/2023/3823879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 05/02/2025]
Abstract
Pathogen strain diversity is an important driver of the trajectory of epidemics. The role of bioclimatic factors on the spatial distribution of dengue virus (DENV) serotypes has, however, not been previously studied. Hence, we developed municipality-scale environmental suitability maps for the four dengue virus serotypes using maximum entropy modeling. We fit climatic variables to municipality presence records from 2012 to 2020 in Mexico. Bioclimatic variables were explored for their environmental suitability to different DENV serotypes, and the different distributions were visualized using three cutoff probabilities representing 90%, 95%, and 99% sensitivity. Municipality-level results were then mapped in ArcGIS. The overall accuracy for the predictive models was 0.69, 0.68, 0.75, and 0.72 for DENV-1, DENV-2, DENV-3, and DENV-4, respectively. Important predictors of all DENV serotypes were the growing degree days for December, January, and February, which are an indicator of higher temperatures and the precipitation of the wettest month. The minimum temperature of the coldest month between -5°C and 20°C was found to be suitable for DENV-1 and DENV-2 serotypes. Respectively, above 700-900 mm of rainfall, the suitability for DENV-1 and DENV-2 begins to decline, while higher humidity still favors DENV-3 and DENV-4. The sensitivity concerning the suitability map was developed for Mexico. DENV-1, DENV-2, DENV-3, and DENV-4 serotypes will be found more commonly in the municipalities classified as suitable based on their respective sensitivity of 91%, 90%, 89%, and 85% in Mexico. As the microclimates continue to change, specific bioclimatic indices may be used to monitor potential changes in DENV serotype distribution. The suitability for DENV-1 and DENV-2 is expected to increase in areas with lower minimum temperature ranges, while DENV-3 and DENV-4 will likely increase in areas that experience higher humidity. Ongoing surveillance of municipalities with predicted suitability of 89% and 85% should be expanded to account for the accurate DENV serotype prevalence and association between bioclimatic parameters.
Collapse
Affiliation(s)
- Esther Annan
- Center for Health and Wellbeing, School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Jailos Lubinda
- Malaria Atlas Project, Telethon Kids Institute, 6009, Nedlands, WA, Australia
| | - Jesús Treviño
- Department of Urban Affairs at the School of Architecture, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Léon 66455, Mexico
| | - William Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Medicine, Division of Infectious Disease, Oregon Health and Science University, Portland, OR, USA
| | - Dina Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, U Conn Health, Farmington, CT 06030, USA
| | - Jurgen Pilz
- Department of Statistics, University of Klagenfurt, Klagenfurt, Austria
| | - Benjamin Lintner
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad of Sonora, Hermosillo 83000, Mexico
| | | | - Ubydul Haque
- Rutgers Global Health Institute, New Brunswick, NJ, USA
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Purnama SG, Susanna D, Achmadi UF, Eryando T. Attitude towards dengue control efforts with the potential of digital technology during COVID-19: partial least squares-structural equation modeling. F1000Res 2023; 11:1283. [PMID: 37441548 PMCID: PMC10333779 DOI: 10.12688/f1000research.125318.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Dengue fever is still a public health issue in Indonesia, and during the coronavirus disease 2019 (COVID-19) pandemic, integrated digital technology will be required for its control. This study aims to identify critical indicators influencing attitudes towards dengue control related to the potential for implementing digital technology. Methods: This was a cross-sectional survey, with 515 people willing to fill out an online questionnaire. The analysis was conducted using Partial Least Square-Structural Equation Modelling (PLS-SEM). There were 46 indicators used to assess attitudes toward dengue control, which were organized into six variables: the need for digital information systems, perceptions of being threatened with dengue, the benefits of dengue control programs, program constraints, environmental factors and attitudes in dengue control. Results: The source of information needed for dengue control was mainly through social media. There was a positive relationship between perception of environmental factors to perception of dengue threat, perception of program constraints, perception of program benefits, and perception of digital technology needs. Perception of program benefits and threatened perception of dengue have a positive relationship with perception of digital technology needs. Conclusions: This model showed the variables perception of digital technology and perception of benefits had a positive association with attitude towards dengue control.
Collapse
Affiliation(s)
- Sang Gede Purnama
- Doctoral Study Program, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
- Department of Public Health and Preventive Medicine, Medicine Faculty, Udayana University, Denpasar, Bali, Indonesia
| | - Dewi Susanna
- Department of Environmetal Health, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| | - Umar Fahmi Achmadi
- Department of Environmetal Health, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| | - Tris Eryando
- Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| |
Collapse
|
8
|
Damtew YT, Tong M, Varghese BM, Anikeeva O, Hansen A, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Bi P. Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis. EBioMedicine 2023; 91:104582. [PMID: 37088034 PMCID: PMC10149186 DOI: 10.1016/j.ebiom.2023.104582] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS A systematic literature search was conducted in PubMed, Scopus, Embase, and Web of Science from January 1990 to September 20, 2022. We included peer reviewed original observational studies using ecological time series, case crossover, or case series study designs reporting the association of high temperatures and heatwave with dengue and comparing risks over different exposures or time periods. Studies classified as case reports, clinical trials, non-human studies, conference abstracts, editorials, reviews, books, posters, commentaries; and studies that examined only seasonal effects were excluded. Effect estimates were extracted from published literature. A random effects meta-analysis was performed to pool the relative risks (RRs) of dengue infection per 1 °C increase in temperature, and further subgroup analyses were also conducted. The quality and strength of evidence were evaluated following the Navigation Guide systematic review methodology framework. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS The study selection process yielded 6367 studies. A total of 106 studies covering more than four million dengue cases fulfilled the inclusion criteria; of these, 54 studies were eligible for meta-analysis. The overall pooled estimate showed a 13% increase in risk of dengue infection (RR = 1.13; 95% confidence interval (CI): 1.11-1.16, I2 = 98.0%) for each 1 °C increase in high temperatures. Subgroup analyses by climate zones suggested greater effects of temperature in tropical monsoon climate zone (RR = 1.29, 95% CI: 1.11-1.51) and humid subtropical climate zone (RR = 1.20, 95% CI: 1.15-1.25). Heatwave events showed association with an increased risk of dengue infection (RR = 1.08; 95% CI: 0.95-1.23, I2 = 88.9%), despite a wide confidence interval. The overall strength of evidence was found to be "sufficient" for high temperatures but "limited" for heatwaves. Our results showed that high temperatures increased the risk of dengue infection, albeit with varying risks across climate zones and different levels of national income. INTERPRETATION High temperatures increased the relative risk of dengue infection. Future studies on the association between temperature and dengue infection should consider local and regional climate, socio-demographic and environmental characteristics to explore vulnerability at local and regional levels for tailored prevention. FUNDING Australian Research Council Discovery Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia; College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia.
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra ACT, 2601, Australia.
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.
| | - Geoffrey Morgan
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
9
|
Lessa CLS, Hodel KVS, Gonçalves MDS, Machado BAS. Dengue as a Disease Threatening Global Health: A Narrative Review Focusing on Latin America and Brazil. Trop Med Infect Dis 2023; 8:241. [PMID: 37235289 PMCID: PMC10221906 DOI: 10.3390/tropicalmed8050241] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Arboviruses constitute the largest known group of viruses. These viruses are the etiological agents of pathologies known as arboviruses, with dengue being one of the most prevalent. Dengue has resulted in important socioeconomic burdens placed on different countries around the world, including those in Latin America, especially Brazil. Thus, this work intends to carry out a narrative-based review of the literature, conducted using a study of the secondary data developed through a survey of scientific literature databases, and to present the situation of dengue, particularly its distribution in these localities. Our findings from the literature demonstrate the difficulties that managers face in controlling the spread of and planning a response against dengue, pointing to the high cost of the disease for public coffers, rendering the resources that are already limited even scarcer. This can be associated with the different factors that affect the spread of the disease, including ecological, environmental, and social factors. Thus, in order to combat the disease, it is expected that targeted and properly coordinated public policies need to be adopted not only in specific localities, but also globally.
Collapse
Affiliation(s)
- Carlos Letacio Silveira Lessa
- Postgraduate Program in Industrial Management and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| | - Marilda de Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
- Anemia Research Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- Postgraduate Program in Industrial Management and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| |
Collapse
|
10
|
Li C, Wang Z, Yan Y, Qu Y, Hou L, Li Y, Chu C, Woodward A, Schikowski T, Saldiva PHN, Liu Q, Zhao Q, Ma W. Association Between Hydrological Conditions and Dengue Fever Incidence in Coastal Southeastern China From 2013 to 2019. JAMA Netw Open 2023; 6:e2249440. [PMID: 36598784 PMCID: PMC9857674 DOI: 10.1001/jamanetworkopen.2022.49440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Dengue fever is a climate-sensitive infectious disease. However, its association with local hydrological conditions and the role of city development remain unclear. OBJECTIVE To quantify the association between hydrological conditions and dengue fever incidence in China and to explore the modification role of city development in this association. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study collected data between January 1, 2013, and December 31, 2019, from 54 cities in 4 coastal provinces in southeast China. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated from ambient temperature and precipitation, with SPEI thresholds of 2 for extreme wet conditions and -2 for extreme dry conditions. The SPEI-dengue fever incidence association was examined over a 6-month lag, and the modification roles of 5 city development dimensions were assessed. Data were analyzed in May 2022. EXPOSURES City-level monthly temperature, precipitation, SPEI, and annual city development indicators from 2013 to 2019. MAIN OUTCOMES AND MEASURES The primary outcome was city-level monthly dengue fever incidence. Spatiotemporal bayesian hierarchal models were used to examine the SPEI-dengue fever incidence association over a 6-month lag period. An interaction term between SPEI and each city development indicator was added into the model to assess the modification role of city development. RESULTS Included in the analysis were 70 006 dengue fever cases reported in 54 cities in 4 provinces in China from 2013 to 2019. Overall, a U-shaped cumulative curve was observed, with wet and dry conditions both associated with increased dengue fever risk. The relative risk [RR] peaked at a 1-month lag for extreme wet conditions (1.27; 95% credible interval [CrI], 1.05-1.53) and at a 6-month lag for extreme dry conditions (1.63; 95% CrI, 1.29-2.05). The RRs of extreme wet and dry conditions were greater in areas with limited economic development, health care resources, and income per capita. Extreme dry conditions were higher and prolonged in areas with more green space per capita (RR, 1.84; 95% CrI, 1.37-2.46). Highly urbanized areas had a higher risk of dengue fever after extreme wet conditions (RR, 1.80; 95% CrI, 1.26-2.56), while less urbanized areas had the highest risk of dengue fever in extreme dry conditions (RR, 1.70; 95% CrI, 1.11-2.60). CONCLUSIONS AND RELEVANCE Results of this study showed that extreme hydrological conditions were associated with increased dengue fever incidence within a 6-month lag period, with different dimensions of city development playing various modification roles in this association. These findings may help in developing climate change adaptation strategies and public health interventions against dengue fever.
Collapse
Affiliation(s)
- Chuanxi Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Zhendong Wang
- Dezhou Center for Disease Control and Prevention, Dezhou, China
| | - Yu Yan
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Yinan Qu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Liangyu Hou
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Yijie Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, Nathan, Queensland, Australia
| | - Alistair Woodward
- Department of Epidemiology and Biostatistics, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Qiyong Liu
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| |
Collapse
|
11
|
Cabrera M, Leake J, Naranjo-Torres J, Valero N, Cabrera JC, Rodríguez-Morales AJ. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop Med Infect Dis 2022; 7:322. [PMID: 36288063 PMCID: PMC9611387 DOI: 10.3390/tropicalmed7100322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Dengue fever is a serious and growing public health problem in Latin America and elsewhere, intensified by climate change and human mobility. This paper reviews the approaches to the epidemiological prediction of dengue fever using the One Health perspective, including an analysis of how Machine Learning techniques have been applied to it and focuses on the risk factors for dengue in Latin America to put the broader environmental considerations into a detailed understanding of the small-scale processes as they affect disease incidence. Determining that many factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors over larger geographic areas than those currently studied is lacking to determine which predictors are the most effective. In addition, it provides insight into techniques of Machine Learning used for future predictive models, as well as general workflow for Machine Learning projects of dengue fever.
Collapse
Affiliation(s)
- Maritza Cabrera
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3480094, Chile
- Facultad Ciencias de la Salud, Universidad Católica del Maule, Talca 3480094, Chile
| | - Jason Leake
- Department of Engineering Design and Mathematics, Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, UK
| | - José Naranjo-Torres
- Academic and ML Consulting Department, Global Consulting H&G, 8682 Sorrento Street, Orlando, FL 32819, USA
| | - Nereida Valero
- Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Zulia, Venezuela
| | - Julio C. Cabrera
- Faculty of Engineering, Computing Engineering, Universidad Rafael Belloso Chacín, Maracaibo 4005, Zulia, Venezuela
| | - Alfonso J. Rodríguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira 660003, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima 156104, Peru
- Faculty of Medicine, Institución Universitaria Visión de las Américas, Pereira 660003, Colombia
| |
Collapse
|