1
|
Kabir MA, Nandi SK, Suma AY, Abdul Kari Z, Mohamad Sukri SA, Wei LS, Al Mamun A, Seguin P, Herault M, Khoo MI, Téllez-Isaías G. The Potential of Fish Protein Hydrolysate Supplementation in Nile Tilapia Diets: Effects on Growth and Health Performance, Disease Resistance, and Farm Economic Analysis. Appl Biochem Biotechnol 2024; 196:7145-7167. [PMID: 38489116 DOI: 10.1007/s12010-024-04913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p < 0.05) varied between experimental diet groups. Furthermore, the test diets were more palatable when FPH was included at 1% and 2%. Fish that were fed with a 2% FPH-treated diet had significantly (p < 0.05) greater growth indices than other treatments. Additionally, their feed utilization was significantly (p < 0.05) improved. The experimental diets and intestinal total bacteria count (TBC) exhibited a rising trend with FPH levels, where the 2% FPH-treated diet recorded the highest TBC. Neutrophil (109/L), lymphocyte (109/L), eosinophil (109/L), and red blood cell(1012/L) counts were significantly (p < 0.05) higher in the 2% FPH-treated group, while the white blood cell (109/L), and basophil (109/L) counts were not influenced by the FPH inclusion. Moreover, the FPH-treated groups displayed lower creatinine, bilirubin, and urea levels than the control. The histological examination demonstrated that themid-intestine of 2% FPH-fed Nile tilapia had an unbroken epithelial wall, more villi with frequent distribution of goblet cells, wider tunica muscularis, and stronger stratum compactum bonding than other treatments. Additionally, this group exhibited more nuclei and erythrocytes and less vacuolar cytoplasm in liver than their counterparts. Nile tilapia that were given a diet containing 2% FPH had significantly (p < 0.05) higher resistance (83.33%) to S. iniae during the bacterial challenge test. A significant (p < 0.05) enhancement in farm economic efficiency was observed in the higher inclusion of FPH in diets. In summary, 2% FPH supplementation in Nile tilapia diets improved their growth performance, feed utilization, health status, disease resistance, and farm economic efficiency.
Collapse
Affiliation(s)
- Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Shishir Kumar Nandi
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Afrina Yeasmin Suma
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Abdullah Al Mamun
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Paul Seguin
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Mikael Herault
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
2
|
Natraj P, Rajan P, Jeon YA, Kim SS, Lee YJ. Antiadipogenic Effect of Citrus Flavonoids: Evidence from RNA Sequencing Analysis and Activation of AMPK in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17788-17800. [PMID: 37955544 DOI: 10.1021/acs.jafc.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.
Collapse
Affiliation(s)
- Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 63607, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
3
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
4
|
Fragaria × ananassa cv. Senga Sengana Leaf: An Agricultural Waste with Antiglycation Potential and High Content of Ellagitannins, Flavonols, and 2-Pyrone-4,6-dicarboxylic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165293. [PMID: 36014531 PMCID: PMC9415522 DOI: 10.3390/molecules27165293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Strawberry leaves are considered a valuable waste material; so far, mainly due to their antioxidant properties. Since the annual production of this crop is high, our study aimed to thoroughly examine the chemical composition and antidiabetes-related bioactivity of Fragaria × ananassa leaf of its popular and productive cultivar Senga Sengana. Leaves from three different seasons, collected after fruiting, were extensively analyzed (UHPLC-qTOF-MS/MS, HPLC-DAD). Some individual components were isolated and quantified, including specific flavonol diglycosides (e.g., 3-O-[β-xylosyl(1‴→2″)]-β-glucuronosides). The separated quercetin glycosides were tested in an antiglycation assay, and their methylglyoxal uptake capacity was measured. In addition, the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC) was confirmed at relatively high levels, providing further opportunity for strawberry leaf utilization. We want to bring to the attention of the food, pharmaceutical, and cosmetic industries the Senga Sengana strawberry leaf as a new botanical raw material. It is rich in PDC, ellagitannins, and flavonols—potent glycation inhibitors.
Collapse
|
5
|
Rajan P, Natraj P, Ranaweera SS, Dayarathne LA, Lee YJ, Han CH. Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells. J Vet Sci 2022; 23:e4. [PMID: 35088951 PMCID: PMC8799946 DOI: 10.4142/jvs.21256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the anti-adipogenic effects of flavonoids are unclear. OBJECTIVES The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. METHODS The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. RESULTS The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. CONCLUSION The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.
Collapse
Affiliation(s)
- Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
6
|
Dayarathne LA, Ranaweera SS, Natraj P, Rajan P, Lee YJ, Han CH. The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells. J Vet Sci 2021; 22:e92. [PMID: 34854271 PMCID: PMC8636664 DOI: 10.4142/jvs.2021.22.e92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Naringin and its aglycone naringenin are citrus-derived flavonoids with several pharmacological effects. On the other hand, the mechanism for the anti-diabetic effects of naringenin and naringin are controversial and remain to be clarified further. Objective This study examined the relationship between glucose uptake and AMP-activated protein kinase (AMPK) phosphorylation by naringenin and naringin in high glucose-treated HepG2 cells. Methods Glucose uptake was measured using the 2-NBDG fluorescent D-glucose analog. The phosphorylation levels of AMPK and GSK3β (Glycogen synthase kinase 3 beta) were observed by Western blotting. Molecular docking analysis was performed to evaluate the binding affinity of naringenin and naringin to the γ-subunit of AMPK. Results The treatment with naringenin and naringin stimulated glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Both flavonoids increased glucose uptake by promoting the phosphorylation of AMPK at Thr172 and increased the phosphorylation of GSK3β. Molecular docking analysis showed that both naringenin and naringin bind to the γ-subunit of AMPK with high binding affinities. In particular, naringin showed higher binding affinity than the true modulator, AMP with all three CBS domains (CBS1, 3, and 4) in the γ-subunit of AMPK. Therefore, both naringenin and naringin could be positive modulators of AMPK activation, which enhance glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Conclusions The increased phosphorylation of AMPK at Thr172 by naringenin and naringin might enhance glucose uptake regardless of insulin stimulation in high glucose treated HepG2 cells.
Collapse
Affiliation(s)
| | | | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
7
|
Koh YC, Lin YC, Lee PS, Lu TJ, Lin KY, Pan MH. A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food Funct 2021; 11:7545-7560. [PMID: 32815965 DOI: 10.1039/d0fo01405b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai-Yi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Jia Y, Ma Y, Cheng G, Zhang Y, Cai S. Comparative Study of Dietary Flavonoids with Different Structures as α-Glucosidase Inhibitors and Insulin Sensitizers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10521-10533. [PMID: 31461284 DOI: 10.1021/acs.jafc.9b04943] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work was designed to comparatively investigate 27 dietary flavonoids that act as α-glucosidase inhibitors and insulin sensitizers. On the basis of the results of an in vitro experiment of α-glucosidase inhibition, myricetin (IC50 = 11.63 ± 0.36 μM) possessed the strongest inhibitory effect, followed by apigenin-7-O-glucoside (IC50 = 22.80 ± 0.24 μM) and fisetin (IC50 = 46.39 ± 0.34 μM). A three-dimensional quantitative structure-activity relationship model of α-glucosidase inhibitors with good predictive capability [comparative molecular field analysis, q2 = 0.529, optimum number of components (ONC) = 10, R2 = 0.996, F = 250.843, standard error of estimation (SEE) = 0.064, and two descriptors; comparative similarity index analysis, q2 = 0.515, ONC = 10, R2 = 0.997, F = 348.301, SEE = 0.054, and four descriptors] was established and indicated that meta positions of ring B favored bulky and minor, electron-withdrawing, and hydrogen bond donor groups. The presence of electron-donating and hydrogen bond acceptor groups at position 4' of ring B could improve α-glucosidase activity. Position 3 of ring C favored minor, electron-donating, and hydrogen bond donor groups, whereas position 7 of ring A favored bulky and hydrogen bond acceptor groups. Molecular docking screened five flavonoids (baicalein, isorhamnetin-3-O-rutinoside, apigenin-7-O-glucoside, kaempferol-7-O-β-glucoside, and cyanidin-3-O-glucoside) that can act as insulin sensitizers and form strong combinations with four key protein targets involved in the insulin signaling pathway. Apigenin-7-O-glucoside (60 μM) can effectively improve insulin resistance, and glucose uptake increased by approximately 73.06% relative to the model group of insulin-resistant HepG2 cells. Therefore, apigenin-7-O-glucoside might serve as the most effective α-glucosidase inhibitor and insulin sensitizer. This work may guide diabetes patients to improve their condition through dietary therapy.
Collapse
Affiliation(s)
- Yijia Jia
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan 650500 , People's Republic of China
| | - Yanli Ma
- College of Food Science and Technology , Hebei Agricultural University , Baoding , Hebei 071001 , People's Republic of China
| | - Guiguang Cheng
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan 650500 , People's Republic of China
| | - Yuanyue Zhang
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan 650500 , People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan 650500 , People's Republic of China
| |
Collapse
|
9
|
Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 2019; 39:2505-2533. [PMID: 31074028 DOI: 10.1002/med.21592] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022]
Abstract
Small molecule, dietary antioxidants exert a remarkably broad range of bioactivities, and many of these can be explained by the influence of antioxidants on the redox homeostasis. Such compounds help to modulate the levels of harmful reactive oxygen/nitrogen species, and therefore participate in the regulation of various redox signaling pathways. However, upon ingestion, antioxidants usually undergo extensive metabolism that can generate a wide range of bioactive metabolites. This makes it difficult, but otherwise a need, to identify the ones responsible for the different activities of antioxidants. By better understanding their ways of action, the use of antioxidants in therapy can be improved. This review provides a summary on the role of the in vivo metabolic changes and the oxidized metabolites on the mechanisms behind the bioactivity of antioxidants. A special attention is given to metabolites described as products of biomimetic oxidative chemical reactions, which can be considered as models of free radical scavenging. During such reactions a wide variety of metabolites are formed, and they can exert completely different specific bioactivities as compared to their parent antioxidants. This implies that exploring the free radical scavenging-related metabolite fingerprint of each antioxidant molecule, collectively defined here as the scavengome, will lead to a deeper understanding of the bioactivity of these compounds. Furthermore, this paper aims to be a working tool for systematic studies on oxidized metabolic fingerprints of antioxidants, which will certainly reveal an often-neglected segment of chemical space that is a treasury of bioactive compounds.
Collapse
Affiliation(s)
- Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| |
Collapse
|
10
|
Areti A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A. Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy. Mol Neurobiol 2018; 55:7463-7475. [PMID: 29427084 DOI: 10.1007/s12035-018-0920-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/21/2018] [Indexed: 01/14/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting complication which develops as a consequence of treatment with chemotherapeutic agents like oxaliplatin and is a mainstay of therapy for colorectal cancer. Ever since CIPN was identified, understanding its exact pathomechanisms remains a clinical challenge. The role of mitochondrial dysfunction and glial cell activation has surfaced in the etiology of CIPN. Rosmarinic acid (RA), a known mitoprotectant exerts neuroprotection against the oxidative stress and neuroinflammation in various disease conditions. Hence, in the present study, we investigated the effect using rosmarinic acid (25 and 50 mg/kg, po) in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in rats. Results showed that RA significantly (p < 0.001) prevented the functional deficits, reversed oxaliplatin-induced mechanical allodynia and cold hyperalgesia in rats. It reduced the oxidative stress, improved the mitochondrial function, and prevented the oxaliplatin-induced loss of ATP levels. RA significantly (p < 0.01) inhibited the spinal glial cell activation and suppressed the expression of inflammatory markers. RA treatment also resulted in the activation of adenosine monophosphate-activated protein kinase (AMPK) in the peripheral nerves and dorsal root ganglion (DRG) which also might have contributed to its neuroprotective actions. In vitro screening also revealed that RA did not compromise the anti-cancer activity of oxaliplatin in colon cancer cells (HT-29). Taken together, the above results demonstrate the therapeutic activity of RA against the oxaliplatin-induced mitochondrial dysfunction and neuroinflammation and thus, suggest its potential for the management of OIPN. Graphical Abstract Schematic representation of neuroprotective mechanisms of rosmarinic acid via AMPK activation in oxaliplatin-evoked peripheral neuropathy.
Collapse
Affiliation(s)
- Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
- Division of Neurology and Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
11
|
Coulerie P, Ratinaud Y, Moco S, Merminod L, Naranjo Pinta M, Boccard J, Bultot L, Deak M, Sakamoto K, Queiroz EF, Wolfender JL, Barron D. Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. JOURNAL OF NATURAL PRODUCTS 2016; 79:2856-2864. [PMID: 27792327 DOI: 10.1021/acs.jnatprod.6b00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To identify natural bioactive compounds from complex mixtures such as plant extracts, efficient fractionation for biological screening is mandatory. In this context, a fully automated workflow based on two-dimensional liquid chromatography (2D-LC × LC) was developed, allowing for the production of hundreds of semipure fractions per extract. Moreover, the ELSD response was used for online sample weight estimation and automated concentration normalization for subsequent bioassays. To evaluate the efficiency of this protocol, an enzymatic assay was developed using AMP-activated protein kinase (AMPK). The activation of AMPK by nonactive extracts spiked with biochanin A, a known AMPK activator, was enhanced greatly when the fractionation workflow was applied compared to screening crude spiked extracts. The performance of the workflow was further evaluated on a red clover (Trifolium pratense) extract, which is a natural source of biochanin A. In this case, while the crude extract or 1D chromatography fractions failed to activate AMPK, semipure fractions containing biochanin A were readily localized when produced by the 2D-LC×LC-ELSD workflow. The automated fractionation methodology presented demonstrated high efficiency for the detection of bioactive compounds at low abundance in plant extracts for high-throughput screening. This procedure can be used routinely to populate natural product libraries for biological screening.
Collapse
Affiliation(s)
- Paul Coulerie
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Yann Ratinaud
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Sofia Moco
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Loraine Merminod
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Martine Naranjo Pinta
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Laurent Bultot
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Maria Deak
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Kei Sakamoto
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU , 1, Rue Michel Servet, 1211, Geneva 4, Switzerland
| | - Denis Barron
- Nestle Institute of Health Sciences , EPFL Innovation Park, H, CH-1015, Lausanne, Switzerland
| |
Collapse
|