1
|
Mulder PP, Vlig M, Elgersma A, Rozemeijer L, Mastenbroek LS, Middelkoop E, Joosten I, Koenen HJ, Boekema BK. Monocytes and T cells incorporated in full skin equivalents to study innate or adaptive immune reactions after burn injury. Front Immunol 2023; 14:1264716. [PMID: 37901218 PMCID: PMC10611519 DOI: 10.3389/fimmu.2023.1264716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Thermal injury often leads to prolonged and excessive inflammation, which hinders the recovery of patients. There is a notable absence of suitable animal-free models for investigating the inflammatory processes following burn injuries, thereby impeding the development of more effective therapies to improve burn wound healing in patients. Methods In this study, we established a human full skin equivalent (FSE) burn wound model and incorporated human peripheral blood-derived monocytes and T cells. Results Upon infiltration into the FSEs, the monocytes differentiated into macrophages within a span of 7 days. Burn-injured FSEs exhibited macrophages with increased expression of HLA-DR+ and elevated production of IL-8 (CXCL8), in comparison to uninjured FSEs. Among the T cells that actively migrated into the FSEs, the majority were CD4+ and CD25+. These T cells demonstrated augmented expression of markers associated with regulatory T cell, Th1, or Th17 activity, which coincided with significant heightened cytokine production, including IFN-γ, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IP-10 (CXCL10), and TGF-β1. Burn injury did not impact the studied effector T cell subsets or cytokine levels. Discussion Collectively, this study represents a significant advancement in the development of an immunocompetent human skin model, specifically tailored for investigating burn-induced innate or adaptive immune reactions at the site of burn injury.
Collapse
Affiliation(s)
- Patrick P.G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Lotte Rozemeijer
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | | | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J.P.M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bouke K.H.L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
3
|
Lee JS, Kim J, Cui B, Kim SK, Cho SA, An S, Cho SW. Hybrid skin chips for toxicological evaluation of chemical drugs and cosmetic compounds. LAB ON A CHIP 2022; 22:343-353. [PMID: 34904990 DOI: 10.1039/d1lc00550b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of drugs and cosmetics for topical application require safety tests in skin models. However, current skin models, such as skin cell sheets and artificial tissue-engineered skin, do not allow sophisticated toxicological evaluations (e.g., sensory irritation, hepatotoxicity). Animal models are prohibited worldwide for testing cosmetics. Therefore, reliable human skin models that recapitulate physiological events in skin tissue need to be established under in vitro settings. In this study, hybrid human skin models that enable delicate toxicological evaluations of drugs and cosmetic compounds are demonstrated. To recapitulate skin cornification, keratinocytes in the top layer of a vertical microfluidic chip were cultured at the air-liquid interface. For the skin-nerve hybrid model, differentiated neural stem cells in 3D collagen were positioned adjacent to and right below the skin layer. This model enables real-time quantitative skin sensitization analysis following chemical treatments by detecting alterations in neuronal activity in combination with a calcium imaging technique. For the skin-liver model, hepatic cells derived from pluripotent stem cells were cultured in 3D collagen distant from the skin layer. Potential hepatotoxicity of cutaneously applied chemicals in this model can be evaluated by quantification of glutathione and reactive oxygen species. Our study suggests that 3D hybrid skin chips would provide useful human skin models in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Jong Seung Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Su Kyeom Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sun-A Cho
- Safety & Microbiology Lab, Amorepacific Co. R&D Unit, Yongin 17038, Republic of Korea
| | - Susun An
- Safety & Microbiology Lab, Amorepacific Co. R&D Unit, Yongin 17038, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Griffoni C, Neidhart B, Yang K, Groeber-Becker F, Maniura-Weber K, Dandekar T, Walles H, Rottmar M. In vitro skin culture media influence the viability and inflammatory response of primary macrophages. Sci Rep 2021; 11:7070. [PMID: 33782484 PMCID: PMC8007571 DOI: 10.1038/s41598-021-86486-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The replacement of animal models for investigation of inflammation and wound healing has been advancing by means of in vitro skin equivalents with increasing levels of complexity. However, the current in vitro skin models still have a limited pre-clinical relevance due to their lack of immune cells. So far, few steps have been made towards the incorporation of immune cells into in vitro skin and the requirements for immunocompetent co-cultures remain unexplored. To establish suitable conditions for incorporating macrophages into skin models, we evaluated the effects of different media on primary keratinocytes, fibroblasts and macrophages. Skin maturation was affected by culture in macrophage medium, while macrophages showed reduced viability, altered cell morphology and decreased response to pro- and anti-inflammatory stimuli in skin differentiation media, both in 2D and 3D. The results indicate that immunocompetent skin models have specific, complex requirements for supporting an accurate detection of immune responses, which point at the identification of a suitable culture medium as a crucial pre-requisite for the development of physiologically relevant models.
Collapse
Affiliation(s)
- Chiara Griffoni
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Berna Neidhart
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ke Yang
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Florian Groeber-Becker
- Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany.,Core Facility Tissue Engineering, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|
5
|
Maruta R, Takaki K, Yamaji Y, Sezutsu H, Mori H, Kotani E. Effects of transgenic silk materials that incorporate FGF-7 protein microcrystals on the proliferation and differentiation of human keratinocytes. FASEB Bioadv 2020; 2:734-744. [PMID: 33336160 PMCID: PMC7734426 DOI: 10.1096/fba.2020-00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
The silk glands of silkworms produce large quantities of fibroin, which is a protein that can be physically processed and used as a biodegradable carrier for cell growth factors in tissue engineering applications. Meanwhile, protein microcrystals known as polyhedra, which are derived from cypovirus 1, have been used as a vehicle to protect and release encapsulated cell growth factors. We report the generation of transgenic silkworms that express recombinant fibroblast growth factor-7 (FGF-7) fused with the polyhedron-encapsulating signal in polyhedra produced in the middle (MSG) and posterior (PSG) silk glands. Immunofluorescence showed that polyhedra from silk glands are associated with FGF-7. The MSG and PSG from transgenic silkworms were processed into fine powdery materials, from which FGF-7 activity was released to stimulate the proliferation of human keratinocyte epidermal cells. Powders from PSGs exhibited higher FGF-7 activity than those from MSGs. Moreover, PSG powder showed a gradual release of FGF-7 activity over a long period and induced keratinocyte proliferation and differentiation in 3D culture to promote the formation of stratified epidermis expressing positive differentiation marker proteins. Our results indicate that powdery materials incorporating the FGF-7-polyhedra microcrystals from silk glands are valuable for developing cell/tissue engineering applications in vivo and in vitro.
Collapse
Affiliation(s)
- Rina Maruta
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Keiko Takaki
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Yuka Yamaji
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Hideki Sezutsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Hajime Mori
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| | - Eiji Kotani
- Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
6
|
Faway É, Lambert de Rouvroit C, Poumay Y. In vitro models of dermatophyte infection to investigate epidermal barrier alterations. Exp Dermatol 2019; 27:915-922. [PMID: 29957851 DOI: 10.1111/exd.13726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Fungal infections of the skin, known as dermatophytoses, are initiated at the epidermal barrier and lead to dysfunctions of the stratum corneum and cornified skin appendages. Dermatophytosis affects a significant part of the human population and, despite the availability of effective treatments, its prevalence is still increasing. Numerous dermatophyte species are able to induce lesions in both animals and humans, with different clinical pictures and host inflammatory responses. The understanding of the infectious process and of tissue responses has been impeded by discrepancies between observations in vivo or in research models. Indeed, cells cultured as monolayers do not undergo the keratinization process required to study the adherence and invasion of dermatophytes. Animal models lack relevance to study human dermatophytosis because of species-specific differences in the development of lesions and inflammatory responses. This review focuses on the recent development of cultured human skin equivalents, which partly overcomes those limitations and allows improved understanding of the pathogenesis of dermatophytosis in human being, especially the impacts of infection on epidermal barrier integrity.
Collapse
Affiliation(s)
- Émilie Faway
- URPhyM-NARILIS, University of Namur, Namur, Belgium
| | | | - Yves Poumay
- URPhyM-NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Pupovac A, Senturk B, Griffoni C, Maniura-Weber K, Rottmar M, McArthur SL. Toward Immunocompetent 3D Skin Models. Adv Healthc Mater 2018. [PMID: 29542274 DOI: 10.1002/adhm.201701405] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D human skin models provide a platform for toxicity testing, biomaterials evaluation, and investigation of fundamental biological processes. However, the majority of current in vitro models lack an inflammatory system, vasculature, and other characteristics of native skin, indicating scope for more physiologically complex models. Looking at the immune system, there are a variety of cells that could be integrated to create novel skin models, but to do this effectively it is also necessary to understand the interface between skin biology and tissue engineering as well as the different roles the immune system plays in specific health and disease states. Here, a progress report on skin immunity and current immunocompetent skin models with a focus on construction methods is presented; scaffold and cell choice as well as the requirements of physiologically relevant models are elaborated. The wide range of technological and fundamental challenges that need to be addressed to successfully generate immunocompetent skin models and the steps currently being made globally by researchers as they develop new models are explored. Induced pluripotent stem cells, microfluidic platforms to control the model environment, and new real-time monitoring techniques capable of probing biochemical processes within the models are discussed.
Collapse
Affiliation(s)
- Aleta Pupovac
- Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria 3122 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO); Probing Biosystems Future Science Platform and Manufacturing; Clayton Victoria 3168 Australia
| | - Berna Senturk
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Chiara Griffoni
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces; Empa; Swiss Federal Laboratories for Materials Science and Technology; 9014 St. Gallen Switzerland
| | - Sally L. McArthur
- Faculty of Science; Engineering and Technology; Swinburne University of Technology; Hawthorn Victoria 3122 Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO); Probing Biosystems Future Science Platform and Manufacturing; Clayton Victoria 3168 Australia
| |
Collapse
|
9
|
Choi H, Kim DJ, Nam S, Lim S, Hwang JS, Park KS, Hong HS, Won Y, Shin MK, Chung E, Son Y. Substance P restores normal skin architecture and reduces epidermal infiltration of sensory nerve fiber in TNCB-induced atopic dermatitis-like lesions in NC/Nga mice. J Dermatol Sci 2017; 89:248-257. [PMID: 29269174 DOI: 10.1016/j.jdermsci.2017.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. Substance P (SP) is an 11-amino-acid endogenous neuropeptide that belongs to the tachykinin family and several reports recently have supported the anti-inflammatory and tissue repairing roles of SP. OBJECTIVE In this study, we investigated whether SP can improve AD symptoms, especially the impaired skin barrier function, in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced chronic dermatitis of NC/Nga mice or not. METHOD AD-like dermatitis was induced in NC/Nga mice by repeated sensitization with TNCB for 5 weeks. The experimental group designations and topical treatments were as follows: vehicle group (AD-VE); SP group (AD-SP); and SP with NK1R antagonist CP99994 (AD-SP-A) group. Histological analysis was performed to evaluate epidermal differentiation, dermal integrity, and epidermal nerve innervation in AD-like lesions. The skin barrier functions and pruritus of NC/Nga mice were evaluated by measuring transepidermal water loss (TEWL) and scratching behavior, respectively. RESULT Topical SP treatment resulted in significant down-regulation of Ki67 and the abnormal-type keratins (K) K6, K16, and K17, restoration of filaggrin and claudin-1, marked reduction of TEWL, and restoration of basement membrane and dermal collagen deposition, even under continuous sensitization of low dose TNCB. In addition, SP significantly reduced innervation of itch-evoking nerve fibers, gelatinase activity and nerve growth factor (NGF) expression in the epidermis but upregulated semaphorin-3A (Sema3A) expression in the epidermis, along with reduced scratching behavior in TNCB-treated NC/Nga mice. All of these effects were completely reversed by co-treatment with the NK1R antagonist CP99994. In cultured human keratinocytes, SP treatment reduced expression of TGF-α, but upregulated TGF-β and Sema3A. CONCLUSION Topically administered SP can restore normal skin barrier function, reduce epidermal infiltration of itch-evoking nerve fibers in the AD-like skin lesions, and alleviate scratching behavior. Thus, SP may be proposed as a potential medication for chronic dermatitis and AD.
Collapse
Affiliation(s)
- Hyeongwon Choi
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Dong-Jin Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Seungwoo Nam
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Sunki Lim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Jae-Sung Hwang
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Ki Sook Park
- East-West Medical Research Institute, College of Medicine, Kyung Hee University, Republic of Korea; Kyung Hee Institute of Regenerative Medicine, Republic of Korea
| | - Hyun Sook Hong
- East-West Medical Research Institute, College of Medicine, Kyung Hee University, Republic of Korea; Kyung Hee Institute of Regenerative Medicine, Republic of Korea
| | - Younsun Won
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea
| | - Min Kyung Shin
- Department of Dermatology, Kyung Hee University Hospital, Seoul, Republic of Korea.
| | - Eunkyung Chung
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea; BIO R&D Center, L&K BIOMED CO. LTD., Seoul, Republic of Korea.
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In 446-701, Republic of Korea; Kyung Hee Institute of Regenerative Medicine, Republic of Korea.
| |
Collapse
|
10
|
Choi H, Kim DJ, Nam S, Lim S, Hwang JS, Park KS, Hong HS, Shin MK, Chung E, Son Y. Manifestation of atopic dermatitis-like skin in TNCB-induced NC/Nga mice is ameliorated by topical treatment of substance P, possibly through blockade of allergic inflammation. Exp Dermatol 2017; 27:396-402. [PMID: 28833499 DOI: 10.1111/exd.13421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. In this study, topically applied substance P (SP) significantly alleviated AD-like clinical symptoms in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced dermatitis in NC/Nga mice. This effect was nullified by pretreatment of the neurokinin-1 receptor (NK-1R) antagonist CP99994. SP treatment significantly reduced the infiltration of mast cells and CD3-positive T cells as well as inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and thymic stromal lymphopoietin (TSLP), in AD-like skin lesions and decreased the levels of IgE and thymus and activation-regulated chemokine in serum. This SP-induced alleviation of allergic inflammatory responses was also confirmed as reduced activation in the axillary lymph nodes (aLN) and spleen, suggesting the systemic effect of SP on immune responses in TNCB-induced NC/Nga mice. Furthermore, SP-mediated TSLP reduction was confirmed in human keratinocyte culture under pro-inflammatory TNF-α stimulation. Taken together, these results suggest that topically administered SP may have potential as a medication for atopic dermatitis.
Collapse
Affiliation(s)
- Hyeongwon Choi
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea.,R&D center, Cell & Bio, Seoul, Korea
| | - Dong-Jin Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea
| | - Seungwoo Nam
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea.,R&D center, Cell & Bio, Seoul, Korea
| | - Sunki Lim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea.,R&D center, Cell & Bio, Seoul, Korea
| | - Jae-Sung Hwang
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea
| | - Ki Sook Park
- Department of Clinical Pharmacology, College of Medicine, Kyung Hee University, Yong In, Korea.,Kyung Hee Institute of Regenerative Medicine, Dongdaemun-gu, Korea
| | - Hyun Sook Hong
- Department of Clinical Pharmacology, College of Medicine, Kyung Hee University, Yong In, Korea.,Kyung Hee Institute of Regenerative Medicine, Dongdaemun-gu, Korea
| | - Min Kyung Shin
- Department of Dermatology, Kyung Hee University Hospital, Seoul, Korea
| | - Eunkyung Chung
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea.,Bio R&D center, L&K Biomed Co. Ltd., Seoul, Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Yong In, Korea.,Kyung Hee Institute of Regenerative Medicine, Dongdaemun-gu, Korea
| |
Collapse
|
11
|
Huh MI, An SH, Kim HG, Song YJ, Choi EC, An SH, Choi WS, Huh JS, Lim JO. Rapid expansion and auto-grafting efficiency of porcine full skin expanded by a skin bioreactor ex vivo. Tissue Eng Regen Med 2016; 13:31-38. [PMID: 30603382 DOI: 10.1007/s13770-016-9096-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022] Open
Abstract
Full skin auto-grafts are required for reconstruction of skin burns and trauma scars. However, currently available clinical approaches such as sheet skin graft, mesh skin grafts, artificial skin graft, and in vivo skin expansion have limitations due to their potential danger for secondary damage and scar formation at the donor site, and discomfort during skin expansion. We developed an advanced bioreactor system and evaluated its function in skin expansion using porcine full skin. The reactor was designed as a pneumatic cylinder type, was programmed to adjust the pressure and the operating time. The system was composed of culture chamber unit, environmental control unit, and monitoring unit. Skins were expanded at 200 kPa pneumatic force and the expanded skins were analyzed by immunohistochemistry and histology. Furthermore we carried out auto-grafting experiment of the expanded skins in vivo using Yucatan pigs and skins were harvested and histologically analyzed after 8 weeks. The results showed that the bioreactor expanded skins to 160% in 4 hours. Histological analysis of the expanded skins revealed that epidermal cells and dermal fibroblasts were viable and remained integrity. The results of auto-grafting experiment indicated that fibrosis and scars were not detected in the grafted skins. This study demonstrates that the newly developed skin bioreactor enabled to obtain large sized full skin rapidly and successful grating.
Collapse
Affiliation(s)
- Man-Il Huh
- 1Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea.,2Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sun Hee An
- 1Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Hwi-Gang Kim
- 3Medical IT Convergence Research Section Daegu-Gyeongbuk Research Center, Electronics and Telecommunications Research Institute, Daegu, Korea
| | - Yun-Jeong Song
- 3Medical IT Convergence Research Section Daegu-Gyeongbuk Research Center, Electronics and Telecommunications Research Institute, Daegu, Korea
| | - Eun-Chang Choi
- 3Medical IT Convergence Research Section Daegu-Gyeongbuk Research Center, Electronics and Telecommunications Research Institute, Daegu, Korea
| | - Sang-Hyun An
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Woo-Sung Choi
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Jeung Soo Huh
- 5Department of Materials Sciences and Metallurgy, College of Engineering, Kyungpook National University, Daegu, Korea
| | - Jeong Ok Lim
- 1Biomedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
12
|
Globular adiponectin induces leukocytosis and mobilizes hematopoietic progenitor cells in mice. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|