1
|
Ting AKY, Tay VSY, Chng HT, Xie S. A Critical Review on the Pharmacodynamics and Pharmacokinetics of Non-steroidal Anti-inflammatory Drugs and Opioid Drugs Used in Reptiles. Vet Anim Sci 2022; 17:100267. [PMID: 36043206 PMCID: PMC9420515 DOI: 10.1016/j.vas.2022.100267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are analgesics used for moderate to severe pain in many animals, including reptiles. However, reptilian dosing regimens are often extrapolated from other animal species. This is not ideal as inter- and intra-species variability in physiology may result in varied drug disposition. Therefore, this critical review aims to collate data from pharmacological studies of selected NSAIDs and opioids performed in reptile and provide an analysis and discussion on the existing pharmacodynamic knowledge and pharmacokinetic data of NSAIDs and opioids use in reptiles. Additionally, key pharmacokinetic trends that may aid dosing of NSAIDs and opioids in reptiles will also be highlighted. Most of the existing reports of NSAID used in reptiles did not observe any adverse effects directly associated to the respective NSAID used, with meloxicam being the most well-studied. Despite the current absence of analgesic efficacy studies for NSAIDs in reptiles, most reports observed behavioural improvements in reptiles after NSAID treatment. Fentanyl and morphine were studied in the greatest number of reptile species with analgesic effects observed with the doses used, while adverse effects such as sedation were observed most with butorphanol use. While pharmacokinetic trends were drug- and species-specific, it was observed that clearance (CL) of drugs tended to be higher in squamates compared to chelonians. The half-life (t1/2) of meloxicam also appeared to be longer when dosed orally compared to other routes of drug administration. This could have been due to absorption-rate limited disposition. Although current data provided beneficial information, there is an urgent need for future research on NSAID and opioid pharmacology to ensure the safe and effective use of opioids in reptiles.
Collapse
|
2
|
Patel S, Ranadive I, Buch P, Khaire K, Balakrishnan S. De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis. J Dev Biol 2022; 10:jdb10020024. [PMID: 35735915 PMCID: PMC9225231 DOI: 10.3390/jdb10020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Across the animal kingdom, lizards are the only amniotes capable of regenerating their lost tail through epimorphosis. Of the many reptiles, the northern house gecko, Hemidactylus flaviviridis, is an excellent model system that is used for understanding the mechanism of epimorphic regeneration. A stage-specific transcriptome profile was generated in the current study following an autotomized tail with the HiSeq2500 platform. The reads obtained from de novo sequencing were filtered and high-quality reads were considered for gene ontology (GO) annotation and pathway analysis. Millions of reads were recorded for each stage upon de novo assembly. Up and down-regulated transcripts were categorized for early blastema (EBL), blastema (BL) and differentiation (DF) stages compared to the normal tail (NT) by differential gene expression analysis. The transcripts from developmentally significant pathways such as FGF, Wnt, Shh and TGF-β/BMP were present during tail regeneration. Additionally, differential expression of transcripts was recorded from biological processes, namely inflammation, cell proliferation, apoptosis and cell migration. Overall, the study reveals the stage-wise transcriptome analysis in conjunction with cellular processes as well as molecular signaling pathways during lizard tail regeneration. The knowledge obtained from the data can be extrapolated to configure regenerative responses in other amniotes, including humans, upon loss of a complex organ.
Collapse
|
3
|
Khaire K, Verma U, Buch P, Patel S, Ranadive I, Balakrishnan S. Site-specific variation in the activity of COX-2 alters the pattern of wound healing in the tail and limb of northern house gecko by differentially regulating the expression of local inflammatory mediators. ZOOLOGY 2021; 148:125947. [PMID: 34333369 DOI: 10.1016/j.zool.2021.125947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/29/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The role of COX-2 induced PGE2 in the site-specific regulation of inflammatory mediators that facilitate disparate wound healing in the tail and limb of a lizard was studied by analysing their levels during various stages of healing. The activity of COX-2 and concentration of PGE2 surged during the early healing phase of tail along with the parallel rise in EP4 receptor. PGE2-EP4 interaction is corelated to early resolution (by 3 dpa) of inflammation by rising the antiinflammatory mediator IL-10. This likely causes reduction in proinflammatory mediators viz., iNOS, TNF-α, IL-6, IL-17 and IL-22. Conversely, in the limb, COX-2 derived PGE2 likely causes rise in inflammation through EP2 receptor-based signalling, as all the proinflammatory mediators stay elevated through the course of healing (till 9 dpa), while expression of IL-10 is reduced. This study brings to light the novel roles of IL-17 and IL-22 in programming wound healing. As IL-17 reduces in tail, IL-22 behaves in reparative way, causing conducive environment for scar-free wound healing. On the contrary, synergic elevation of both IL-17 and Il-22 form a micro-niche suitable for scarred wound healing in limb, thus obliterating its regenerative potential.
Collapse
Affiliation(s)
- Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Pranav Buch
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India.
| |
Collapse
|
4
|
Parmar B, Verma U, Khaire K, Danes D, Balakrishnan S. Inhibition of Cyclooxygenase-2 Alters Craniofacial Patterning during Early Embryonic Development of Chick. J Dev Biol 2021; 9:16. [PMID: 33922791 PMCID: PMC8167724 DOI: 10.3390/jdb9020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390002, India; (B.P.); (U.V.); (K.K.); (D.D.)
| |
Collapse
|
5
|
Xu M, Wang T, Li W, Wang Y, Xu Y, Mao Z, Wu R, Liu M, Liu Y. PGE2 facilitates tail regeneration via activation of Wnt signaling in Gekko japonicus. J Mol Histol 2019; 50:551-562. [PMID: 31535259 DOI: 10.1007/s10735-019-09847-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
Tail regeneration is a distinguishing feature of lizards; however, the mechanisms underlying tail regeneration remain elusive. Prostaglandin E2 (PGE2) is an arachidonic acid metabolite that has been extensively investigated in the inflammatory response under both physiological and pathological conditions. PGE2 also act as a regulator of hematopoietic stem cell homeostasis by interacting with Wnt signaling molecules. The present study aims to identify the effects of PGE2 on tail regeneration and the molecular mechanisms behind it. We initially found that PGE2 levels increased during the early stages of tail regeneration, accompanied by the up-regulated expression of cyclooxygenase 1 and cyclooxygenase 2. Next, we demonstrated that reduced PGE2 production leads to the retardation of tail regeneration. Subsequent experiments demonstrated that this effect is likely mediated by Wnt signaling, which proposing that the activation of the Wnt pathway is essential for the initiation of regeneration. The results showed that inhibition of PGE2 production could suppress Wnt activation and inhibit the proliferation of both epithelial and blastema cells. Furthermore, our findings indicated that forced activation of Wnt signaling could rescue the inhibitory effect of Cox antagonist on regeneration, suggesting a positive role of PGE2 on tail regeneration via a non-inflammatory mechanism.
Collapse
Affiliation(s)
- Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tiantian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wenjuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
6
|
Patel S, Ranadive I, Rajaram S, Desai I, Balakrishnan S. Ablation of BMP signaling hampers the blastema formation in Poecilia latipinna by dysregulating the extracellular matrix remodeling and cell cycle turnover. ZOOLOGY 2019; 133:17-26. [PMID: 30979387 DOI: 10.1016/j.zool.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins play a pivotal role in the epimorphic regeneration in vertebrates. Blastema formation is central to the epimorphic regeneration and crucially determines its fate. Despite an elaborate understanding of importance of Bone morphogenetic protein signaling in regeneration, its specific role during the blastema formation remains to be addressed. Regulatory role of BMP signaling during blastema formation was investigated using LDN193189, a potent inhibitor of BMP receptors. The study involved morphological observation, in vivo proliferation assay by incorporation of BrdU, comet assay, qRT-PCR and western blot. Blastemal outgrowth was seen reduced due to LDN193189 treatment, typified by dimensional differences, reduced number of proliferating cells and decreased levels of PCNA. Additionally, proapoptotic markers were found to be upregulated signifying a skewed cellular turnover. Further, the cell migration was seen obstructed and ECM remodeling was disturbed as well. These findings were marked by differential transcript as well as protein expressions of the key signaling and regulatory components, their altered enzymatic activities and other microscopic as well as molecular characterizations. Our results signify, for the first time, that BMP signaling manifests its effect on blastema formation by controlling the pivotal cellular processes possibly via PI3K/AKT. Our results indicate the pleiotropic role of BMPs specifically during blastema formation in regulating cell migration, cell proliferation and apoptosis, and lead to the generation of a molecular regulatory map of determinative molecules.
Collapse
Affiliation(s)
- Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Shailja Rajaram
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Isha Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar, Anand, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
7
|
Murawala H, Patel S, Ranadive I, Desai I, Balakrishnan S. Variation in expression and activity pattern of mmp2 and mmp9 on different time scales in the regenerating caudal fin of Poecilia latipinna. JOURNAL OF FISH BIOLOGY 2018; 92:1604-1619. [PMID: 29633266 DOI: 10.1111/jfb.13618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Alteration in the expression pattern of matrix metalloproteinase (MMP)2 and MMP9 was studied in the regenerating caudal fin of Poecilia latipinna immediately following amputation until the new tissues gained structural integrity. Timed expression pattern of these two MMPs was studied at enzyme, transcript as well as protein levels. Additionally, both the gelatinases were localized in the regenerating caudal fin during three specific stages of regeneration. The results revealed a progressive increase in the expression of MMP2 starting at 1 h post amputation (hpa), indicating its possible role in the remodelling of extracellular matrix early on during caudal-fin regeneration. Nevertheless, a reduction in transcript level expression of MMP2 at 6 hpa and 12 hpa stages, points towards a possible transcriptional regulation, to further moderate its activity. As observed in the case of MMP2, expression of MMP9 too increased from 1 hpa and remained elevated until 5 dpa. However, the active MMP9 revealed its presence only 12 hpa onwards. Moreover, both the gelatinases were localised in the apical epithelial cap and in the progress zone at wound epithelium (1 dpa) and blastema (60 hpa) stages respectively. Further, during early differentiation stage (5 dpa), high intensities of MMP2 and MMP9 were localized in the newly formed actinotrichia as compared with the tissue proximal to it. Based on the results, it could be construed that the controlled up-regulation of MMP2 and MMP9 from 1 hpa until the early differentiation stage ensures a regulated digestion of extracellular matrix, perhaps to facilitate the recruitment, proliferation, morphogenesis and re-patterning of resident stem cells during caudal fin regeneration in P. latipinna.
Collapse
Affiliation(s)
- H Murawala
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - S Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - I Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar, Anand, 388120, Gujarat, India
| | - S Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
8
|
Buch PR, Ranadive I, Desai I, Balarakrishnan S. Cyclooxygenase-2 interacts with MMP and FGF pathways to promote epimorphic regeneration in lizard Hemidactylus flaviviridis. Growth Factors 2018; 36:69-77. [PMID: 30196771 DOI: 10.1080/08977194.2018.1497021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme known for its role in promoting inflammation, pain and cancer. It has more recently been attributed a function in epimorphic regeneration of vertebrate appendages. However, its position among the molecular regulators of regeneration remains unclear. This work was aimed at analyzing the influence of COX-2 on critical mediators of regenerative processes in the lizard Hemidactylus flaviviridis. It was found during the early events of regeneration that MMP and FGF genes get altered in their expression in response to administration of etoricoxib, a COX-2 inhibitor. Results herein also reflect a positive correlation between COX-2 activity and gelatinase activities in our system. These observations, for the first time, establish a definitive interaction of the COX-2 signal with the MMPs and FGFs as essential to the initiation of tail regeneration, placing it as one of the top regulators of the molecular events which characterize epimorphosis.
Collapse
Affiliation(s)
- Pranav R Buch
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| | - Isha Ranadive
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| | - Isha Desai
- b N. V. Patel College of Pure and Applied Sciences , Vallabh Vidyanagar , Anand , India
| | - Suresh Balarakrishnan
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| |
Collapse
|
9
|
Murawala H, Ranadive I, Patel S, Desai I, Balakrishnan S. Protein expression pattern and analysis of differentially expressed peptides during various stages of tail regeneration in Hemidactylus flaviviridis. Mech Dev 2018; 150:1-9. [DOI: 10.1016/j.mod.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
|
10
|
COX-2 activity and expression pattern during regenerative wound healing of tail in lizard Hemidactylus flaviviridis. Prostaglandins Other Lipid Mediat 2018; 135:11-15. [DOI: 10.1016/j.prostaglandins.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022]
|