1
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
2
|
Zheng K, Ma Y, Chiu C, Xue M, Zhang C, Du D. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment. J Orthop Translat 2024; 45:140-154. [PMID: 38559899 PMCID: PMC10979122 DOI: 10.1016/j.jot.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Lee S, Kang BJ. Surgical Reconstruction of Canine Nonunion Fractures Using Bone Morphogenetic Protein-2-loaded Alginate Microbeads and Bone Allografts. In Vivo 2024; 38:611-619. [PMID: 38418118 PMCID: PMC10905487 DOI: 10.21873/invivo.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Effective treatment of nonunion fractures is challenging as it requires a biological and mechanical environment to promote sufficient osteogenesis. Herein, we present a case series in which we evaluated the clinical efficacy of bone morphogenetic protein-2 (BMP-2)-loaded alginate microbeads and allografts in two dogs with nonunion fractures. CASE REPORT A 3-year-old, 2.3-kg, spayed female Pomeranian (Case 1) presented with intermittent lameness of the left forelimb after radial and ulnar fracture repair 8 weeks prior. A 4-year-old, 4.8-kg, spayed female Pomeranian (Case 2) was referred for non-weight-bearing lameness of the left hindlimb due to implant failure following left tibial fracture repair. Both dogs had atrophic bone ends and no bridging calluses at the fracture site on radiographs, and were diagnosed with nonviable nonunion fractures of the radius/ulna and tibia, respectively. The surgical approach involved implant removal, debridement, and fracture gap reconstruction. BMP-2 was loaded into alginate microbeads for a prolonged release with bone allograft chips in both cases. In Case 1, bead grafts were applied directly at the fracture site, while in Case 2, they were implanted inside a frozen cortical bone allograft as a scaffold to fill the large gap. Postoperative radiography revealed excessive callus formation, early radiographic bone union, and cortical bone remodeling, in line with improved lameness scores. At the final follow-up, gait was improved and the desired bone length and shape were achieved in both cases. CONCLUSION Simultaneous use of osteoinductive BMP-2 alginate microbeads and osteoconductive bone allografts yielded functionally and structurally favorable outcomes in canine nonunion fractures, without major complications.
Collapse
Affiliation(s)
- Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Oryan A, Hassanajili S, Sahvieh S. Effectiveness of a biodegradable 3D polylactic acid/poly(ɛ-caprolactone)/hydroxyapatite scaffold loaded by differentiated osteogenic cells in a critical-sized radius bone defect in rat. J Tissue Eng Regen Med 2020; 15:150-162. [PMID: 33216449 DOI: 10.1002/term.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
The effects of a scaffold made of polylactic acid, poly (ɛ-caprolactone) and hydroxyapatite by indirect 3D printing method with and without differentiated bone cells was tested on the regeneration of a critical radial bone defect in rat. The scaffold characterization and mechanical performance were determined by the rheology, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The defects were created in forty Wistar rats which were randomly divided into the untreated, autograft, scaffold cell-free, and differentiated bone cell-seeded scaffold groups (n = 10 in each group). The expression level of angiogenic and osteogenic markers, analyzed by quantitative real time-polymerase chain reaction (in vitro), significantly improved (p < 0.05) in the scaffold group compared to the untreated one. Radiology and computed tomography scan demonstrated a significant improvement in the cell-seeded scaffold group compared to the untreated one (p < 0.001). Biomechanical, histopathological, histomorphometric, and immunohistochemical investigations showed significantly better regeneration scores in the cell-seeded scaffold and autograft groups compared to the untreated group (p < 0.05). The cell-seeded scaffold and autograft groups did show comparable results on the 80th day post-treatment (p > 0.05), however, most results in the scaffold group were significantly higher than the untreated group (p < 0.05). Differentiated bone cells can enhance bone regeneration potential of the scaffold.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Yoon Y, Jung T, Afan Shahid M, Khan IU, Kim WH, Kweon OK. Frozen-thawed gelatin-induced osteogenic cell sheets of canine adipose-derived mesenchymal stromal cells improved fracture healing in canine model. J Vet Sci 2020; 20:e63. [PMID: 31775190 PMCID: PMC6883194 DOI: 10.4142/jvs.2019.20.e63] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
We assessed the efficacy of frozen-thawed gelatin-induced osteogenic cell sheet (FT-GCS) compared to that of fresh gelatin-induced osteogenic cell sheet (F-GCS) with adipose-derived mesenchymal stromal cells (Ad-MSCs) used as the control. The bone differentiation capacity of GCS has already been studied. On that basis, the experiment was conducted to determine ease of use of GCS in the clinic. In vitro evaluation of F-GCS showed 3–4 layers with an abundant extracellular matrix (ECM) formation; however, cryopreservation resulted in a reduction of FT-GCS layers to 2–3 layers. Cellular viabilities of F-GCS and FT-GCS did not vary significantly. Moreover, there was no significant difference in mRNA expressions of Runx2, β-catenin, OPN, and BMP-7 between F-GCS and FT-GCS. In an in vivo experiment, both legs of six dogs with transverse radial fractures were randomly assigned to one of three groups: F-GCS, FT-GCS, or control. Fracture sites were wrapped with the respective cell sheets and fixed with 2.7 mm locking plates and six screws. At 8 weeks after the operations, bone samples were collected and subjected to micro computed tomography and histopathological examination. External volumes of callus as a portion of the total bone volume in control, F-GCS, and FT-GCS groups were 49.6%, 45.3%, and 41.9%, respectively. The histopathological assessment showed that both F-GCS and FT-GCS groups exhibited significantly (p < 0.05) well-organized, mature bone with peripheral cartilage at the fracture site compared to that of the control group. Based on our results, we infer that the cryopreservation process did not significantly affect the osteogenic ability of gelatin-induced cell sheets.
Collapse
Affiliation(s)
- Yongseok Yoon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Taeseong Jung
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Muhammad Afan Shahid
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Imdad Ullah Khan
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Wan Hee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Oh Kyeong Kweon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit. Med Biol Eng Comput 2019; 58:383-399. [PMID: 31853774 DOI: 10.1007/s11517-019-02046-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Previous studies demonstrated that biphasic electrical stimulation (ES) stimulates bone formation; however, polyimide electrode should be removed after regeneration. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which can be permanently implanted due to excellent biocompatibility to bone tissue. The bioreactor was implanted into a critical-sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via the bioreactor was compared with a sham control group and a positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 132% (p < 0.05) and 174% (p < 0.01), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within the bone defects and adjacent to LCP in all the groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation. Graphical abstract To enhance bone regeneration, a bioreactor comprising collagen sponge and liquid crystal polymer-based electrode was implanted in the bone defect. Within the defect, electrical current pulses having biphasic waveform were applied from the implanted bioreactor.
Collapse
|
7
|
Kim G, Park YS, Lee Y, Jin YM, Choi DH, Ryu KH, Park YJ, Park KD, Jo I. Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS One 2018; 13:e0200111. [PMID: 29975738 PMCID: PMC6033433 DOI: 10.1371/journal.pone.0200111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
We investigated therapeutic potential of human tonsil-derived mesenchymal stem cells (TMSC) subcutaneously delivered to ovariectomized (OVX) mice for developing more safe and effective therapy for osteoporosis. TMSC were isolated from tonsil tissues of children undergoing tonsillectomy, and TMSC-embedded in situ crosslinkable gelatin-hydroxyphenyl propionic acid hydrogel (TMSC-GHH) or TMSC alone were delivered subcutaneously to the dorsa of OVX mice. After 3 months, three-dimensionally reconstructed micro-computed tomographic images revealed better recovery of the femoral heads in OVX mice treated with TMSC-GHH. Serum osteocalcin and alkaline phosphatase were also recovered, indicating bone formation only in TMSC-GHH-treated mice, and absence in hypercalcemia or other severe macroscopic deformities showed biocompatibility of TMSC-GHH. Additionally, visceral fat reduction effects by TMSC-GHH further supported their therapeutic potential. TMSC provided therapeutic benefits toward osteoporosis only when embedded in GHH, and showed potential as a supplement or alternative to current therapies.
Collapse
Affiliation(s)
- Gyungah Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Da Hyeon Choi
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Ha Ryu
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Ewha Tonsil-derived mesenchymal Stem cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Jin LH, Choi BH, Kim YJ, Oh HJ, Kim BJ, Yin XY, Min BH. Nondestructive Assessment of Glycosaminoglycans in Engineered Cartilages Using Hexabrix-Enhanced Micro-Computed Tomography. Tissue Eng Regen Med 2018; 15:311-319. [PMID: 30603556 PMCID: PMC6171677 DOI: 10.1007/s13770-018-0117-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022] Open
Abstract
It is very useful to evaluate the content and 3D distribution of extracellular matrix non-destructively in tissue engineering. This study evaluated the feasibility of using micro-computed tomography (µCT) with Hexabrix to measure quantitatively sulfated glycosaminoglycans (GAGs) of engineered cartilage. Rabbit chondrocytes at passage 2 were used to produce artificial cartilages in polyglycolic acid scaffolds in vitro. Engineered cartilages were incubated with Hexabrix 320 for 20 min and analyzed via µCT scanning. The number of voxels in the 2D and 3D scanning images were counted to estimate the amount of sulfated GAGs. The optimal threshold value for quantification was determined by regression analysis. The 2D µCT images of an engineered cartilage showed positive correlation with the histological image of Safranin-O staining. Quantitative data obtained with the 3D µCT images of 14 engineered cartilages showed strong correlation with sulfated GAGs contents obtained by biochemical analysis (R2 = 0.883, p < 0.001). Repeated exposure of engineered cartilages to Hexabrix 320 and µCT scanning did not significantly affect cell viability, total DNA content, or the total content of sulfated GAGs. We conclude that µCT imaging using Hexabrix 320 provides high spatial resolution and sensitivity to assess the content and 3D distribution of sulfated GAGs in engineered cartilages. It is expected to be a valuable tool to evaluate the quality of engineered cartilage for commercial development in the future.
Collapse
Affiliation(s)
- Long Hao Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Present Address: Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, China
| | - Byung Hyune Choi
- Department of Biomedical Sciences, College of Medicine, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212 Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Hyun Ju Oh
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Byoung Ju Kim
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Cell Therapy Center, Ajou University Medical Center, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499 Korea
| |
Collapse
|