1
|
Kuckelkorn C, Aksoy E, Stojanovic N, Oulahyane L, Ritter M, Pfannkuche K, Fischer H. Engineered In Vitro Multi-Cell Type Ventricle Model Generates Long-Term Pulsatile Flow and Modulates Cardiac Output in Response to Cardioactive Drugs. Adv Healthc Mater 2025; 14:e2403897. [PMID: 39943918 PMCID: PMC12004430 DOI: 10.1002/adhm.202403897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Indexed: 04/18/2025]
Abstract
Cardiac in vitro models serve as promising platforms for physiological and pathological studies, drug testing, and regenerative medicine. This study hypothesizes that immobilizing cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) on a biofunctionalized, hemispherical membrane can generate pulsatile flow through synchronized contractions, thus offering as an in vitro left ventricle model. To test this, a ventricle using a polydimethylsiloxane (PDMS) membrane coated with polydopamine and laminin 511 E8 fragments is engineered. Human iPSC-CMs are cultured on these membranes, alone or in co-culture with cardiac fibroblasts or endothelial cells, for 28 and 14 days, respectively, in a newly developed bioreactor. Flow measurements track beating and flow generation, while drug response, cardiac gene expression, and cell morphology are analyzed. The engineered ventricles maintain continuous beating and flow, achieving a theoretical cardiac output of up to 4 µL min-1 over 28 days, indicating stable cell adhesion and synchronized contraction. Cardiomyocytes respond to cardioactive drugs (carbachol, isoproterenol) and show expected changes in heart rate and cardiac output. In conclusion, the results demonstrate that the proposed engineered ventricle can serve as an in vitro left ventricle model by supporting cardiomyocyte culture and differentiation, generating long-term stable flow, and responding physiologically to cardioactive drugs.
Collapse
Affiliation(s)
- Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ebru Aksoy
- Center for Physiology and PathophysiologyInstitute for NeurophysiologyUniversity and University Hospital of CologneRobert Koch Str. 3950931CologneGermany
| | - Natalija Stojanovic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Laila Oulahyane
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Mira Ritter
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Kurt Pfannkuche
- Center for Physiology and PathophysiologyInstitute for NeurophysiologyUniversity and University Hospital of CologneRobert Koch Str. 3950931CologneGermany
- Center for Molecular Medicine Cologne (CMMC)50931CologneGermany
- Marga‐and‐Walter‐Boll‐Laboratory for Cardiac Tissue Engineering50931CologneGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
2
|
Park JM, Choi SH, Lee ES, Gum SI, Hong S, Kim DS, Han MH, Lee SH, Oh JW. High-Speed Clearing and High-Resolution Staining for Analysis of Various Markers for Neurons and Vessels. Tissue Eng Regen Med 2024; 21:1037-1048. [PMID: 38955906 PMCID: PMC11416450 DOI: 10.1007/s13770-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain. METHODS Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm. RESULTS Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention. CONCLUSION In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.
Collapse
Affiliation(s)
- Jung Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Shil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu, Republic of Korea
| | | | - Sungkuk Hong
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Binaree, Inc., Daegu, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man-Hoon Han
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soung-Hoon Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Song Q, Liu H, Wang W, Chen C, Cao Y, Chen B, Cai B, He R. Carboxyl graphene modified PEDOT:PSS organic electrochemical transistor for in situ detection of cancer cell morphology. NANOSCALE 2024; 16:3631-3640. [PMID: 38276969 DOI: 10.1039/d3nr06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Circulating tumor cells in human peripheral blood play an important role in cancer metastasis. In addition to the size-based and antibody-based capture and separation of cancer cells, their electrical characterization is important for rare cell detection, which can prove fatal in point-of-care testing. Herein, an organic electrochemical transistor (OECT) biosensor made of solution-gated carboxyl graphene mixed with PEDOT:PSS for the detection of cancer cells in situ is reported. Carboxyl graphene was used in this work to modulate cancer cell morphology, which differs significantly from normal blood cells, to achieve rare cancer cell detection. When the concentration of carboxyl graphene mixed in PEDOT:PSS was increased from 0 to 5 mg mL-1, the cancer cell surface area increased from 218 μm2 to 530 μm2, respectively. A change in cell morphology was also detected by the OECT. Negative charges in the cancer cells induced a positive shift in gate voltage, which was approximately 40 mV for spherical-shaped cells. When the cell surface area increased, transfer curves of transistor revealed a negative shift in gate voltage. Therefore, the sensor can be used for in situ detection of cancer cell morphology during the cell capture process, which can be used to identify whether the captured cells are deformable.
Collapse
Affiliation(s)
- Qingyuan Song
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Hongni Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Weiyi Wang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Chaohui Chen
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Yiping Cao
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China.
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Ju FN, Kim CH, Lee KH, Kim CD, Lim J, Lee T, Park CG, Kim TH. Gold nanostructure-integrated conductive microwell arrays for uniform cancer spheroid formation and electrochemical drug screening. Biosens Bioelectron 2023; 222:115003. [PMID: 36525711 DOI: 10.1016/j.bios.2022.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Cancer spheroids, which mimic distinct cell-to-cell and cell-extracellular matrix interactions of solid tumors in vitro, have emerged as a promising tumor model for drug screening. However, owing to the unique characteristics of spheroids composed of three-dimensionally densely-packed cells, the precise characterizations of cell viability and function with conventional colorimetric assays are challenging. Herein, we report gold nanostructure-integrated conductive microwell arrays (GONIMA) that enable both highly efficient uniform cancer spheroid formation and precise electrochemical detection of cell viability. A nanostructured gold on indium tin oxide (ITO) substrate facilitated the initial cell aggregation and further 3D cell growth, while the non-cytophilic polymer microwell arrays restricted the size and shape of the spheroids. As a result, approximately 150 human glioblastoma spheroids were formed on a chip area of 1.13 cm2 with an average diameter of 224 μm and a size variation of only 5% (±11.36 μm). The high uniformity of cancer spheroids contributed to the stability of electrical signals measuring cell viability. Using the fabricated GONIMA, the effects of a representative chemotherapeutic agent, hydroxyurea, on the glioblastoma spheroids were precisely monitored under conditions of varying drug concentrations (0-0.3 mg/mL) and incubation times (24-48 h). Therefore, we conclude that the newly developed platform is highly useful for rapid and precise in vitro drug screening, as well as for the pharmacokinetic analyses of specific drugs using 3D cellular cancer models.
Collapse
Affiliation(s)
- Fu Nan Ju
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea. https://bestlaboratory.wixsite.com/best
| |
Collapse
|
6
|
Kim J, Jang J. 3D printable conductive composite inks for the fabrication of biocompatible electrodes in tissue engineering application. Int J Bioprint 2022; 9:643. [PMID: 36636129 PMCID: PMC9831065 DOI: 10.18063/ijb.v9i1.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022] Open
Abstract
Native tissues are affected by the microenvironment surrounding the tissue, including electrical activities. External electrical stimulation, which is used in replicating electrical activities and regulating cell behavior, is mainly applied in neural and cardiac tissues due to their electrophysiological properties. The in vitro cell culture platform with electrodes provides precise control of the stimulation property and eases the observation of the effects on the cells. The frequently used electrodes are metal or carbon rods, but their risk of damaging tissue and their mechanical properties that are largely different from those of native tissues hinder further applications. Biocompatible polymer reinforced with conductive fillers emerges as a potential solution to fabricate the complex structure of the platform and electrode. Conductive polymer can be used as an ink in the extrusion-based printing method, thus enabling the fabrication of volumetric structures. The filler simultaneously alters the electrical and rheological properties of the ink; therefore, the amount of additional compound should be precisely determined regarding printability and conductivity. This review provides an overview on the rheology and conductivity change relative to the concentration of conductive fillers and the applications of printed electrodes. Next, we discuss the future potential use of a cell culture platform with electrodes from in vitro and in vivo perspectives.
Collapse
Affiliation(s)
- Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea,Corresponding author: Jinah Jang ()
| |
Collapse
|
7
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|