1
|
Shen Y, Tang C, Sun B, Wu Y, Yu X, Cui J, Zhang M, El-Newehy M, El-Hamshary H, Barlis P, Wang W, Mo X. Development of 3D Printed Biodegradable, Entirely X-ray Visible Stents for Rabbit Carotid Artery Implantation. Adv Healthc Mater 2024; 13:e2304293. [PMID: 38444200 DOI: 10.1002/adhm.202304293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/02/2024] [Indexed: 03/07/2024]
Abstract
Biodegradable stents are considered a promising strategy for the endovascular treatment of cerebrovascular diseases. The visualization of biodegradable stents is of significance during the implantation and long-term follow-up. Endowing biodegradable stents with X-ray radiopacity can overcome the weakness of intrinsic radioparency of polymers. Hence, this work focuses on the development of an entirely X-ray visible biodegradable stent (PCL-KIO3) composed of polycaprolactone (PCL) and potassium iodate via physical blending and 3D printing. The in vitro results show that the introduction of potassium iodate makes the 3D-printed PCL stents visualizable under X-ray. So far, there is inadequate study about polymeric stent visualization in vivo. Therefore, PCL-KIO3 stents are implanted into the rabbit carotid artery to evaluate the biosafety and visibility performance. During stent deployment, the visualization of the PCL-KIO3 stent effectively helps to understand the position and dilation status of stents. At 6-month follow-up, the PCL-KIO3 stent could still be observed under X-ray and maintains excellent vessel patency. To sum up, this study demonstrates that PCL-KIO3 stent may provide a robust strategy for biodegradable stent visualization.
Collapse
Affiliation(s)
- Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chaojie Tang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yufan Wu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mianmian Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Peter Barlis
- Department of Medicine, Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wu Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
2
|
Kim JH, Min EJ, Ko Y, Kim DH, Park JB. Change in Maxillary Sinus Mucosal Thickness in Patients with Preoperative Maxillary Sinus Mucosal Thickening as Assessed by Otolaryngologists: A Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1750. [PMID: 37893468 PMCID: PMC10608619 DOI: 10.3390/medicina59101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Maxillary sinus pathologic conditions may increase the risk of complications during posterior maxillary sinus augmentation surgery. The purpose of this study was to evaluate the changes in participants with preoperative maxillary sinus mucosal thickening and to assess this factor as a preoperative risk indicator for sinusitis after maxillary dental implantation. Materials and Methods: We compared the preoperative and postoperative maxillary sinus mucosal thickness (MSMT), the distance between the maxillary sinus ostium and sinus floor (MOD), and the MSMT/MOD ratio. The participants were divided into three groups (sinus augmentation, bone grafting, and no grafting). Results: The mean preoperative MSMT was 4.3 ± 2.0 mm, and the mean MSMT/MOD ratio was 0.13 ± 0.05. No postoperative sinusitis was observed in these patients, including cases caused by anatomical variations. The mean postoperative MSMT was 4.5 ± 2.3 mm, and the mean postoperative MSMT/MOD ratio was 0.15 ± 0.06. There was no statistically significant difference between the groups at each time point (p > 0.05). Conclusions: The study found no significant change in MSMT at post-treatment evaluation, even when considering different subgroups. It underscores the importance of preoperative maxillary sinus radiographic assessments and collaboration between dentists and otolaryngologists for better outcomes in patients with preoperative maxillary sinus mucosal thickening.
Collapse
Affiliation(s)
- Jin-Hyeong Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
| | - Eun Jeong Min
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|