1
|
Khalifa AZ, Perrie Y, Shahiwala A. Solvent free production of liposomes as a vaccine adjuvant with a comparative study of different cationic surfactants. Int J Pharm 2025; 676:125606. [PMID: 40246034 DOI: 10.1016/j.ijpharm.2025.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Liposomes are well known vaccine adjuvants, that could associate with different subunit antigens by several mechanisms to enhance their immunogenicity. However, the adjuvant effect of liposomes differs with varying their physicochemical properties, necessitating the optimisation of formulation parameters to achieve the desired adjuvant effect and immune response. Initial studies focused on optimizing the production of DSPC and cholesterol liposomes using the solvent-free powder hydration method, followed by size reduction via sonication. A 3 × 4 × 9 factorial design, comprising 108 different trials in triplicates, was set to study the influence of key factors involved in the preparation process, including the homogenizer speed, stirring time, and sonication time. The desired size and PDI were achieved by setting the optimized process factors. The model antigen, OVA was loaded into the optimised liposomes which were then purified through an optimized dialysis process. Additional formulation factors were adjusted to maximize loading efficiency, including the concentration of the cationic surfactant, antigen concentration, liposome-to-antigen volume ratio, and the application of lyophilization. Since cationic liposomes are known to be the most immunogenic, a comparative study was conducted using different cationic surfactants, DODAB, HTAB, DTAC, and DHDAB, across various surfactant-to-lipid ratios. The resulting cationic liposomes were evaluated for their physicochemical properties, loading efficiency, drug release profiles, kinetic models, and stability.
Collapse
Affiliation(s)
- Al Zahraa Khalifa
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Amalia E, Sopyan I, Putriana NA, Sriwidodo S. Preparation and molecular interaction of organic solvent-free piperine pro-liposome from soy lecithin. Heliyon 2023; 9:e16674. [PMID: 37274654 PMCID: PMC10238931 DOI: 10.1016/j.heliyon.2023.e16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Pro-liposome is a type of drug delivery system (DDS) with numerous advantages as a stable material with various applicability for several pharmaceutical dosage forms, to effectively deliver the material to reach its target in the human body. Nevertheless, it is mostly designed by employing an organic solvent hence giving rise to safety issues. We have developed a method for the preparation of organic solvent-free liposomes composed of soy lecithin and cholesterol by highlighting the importance of temperature during the initial mixing process, a self-hydration of a thin layer spread film, and a spray-drying technique with a suitable excipient as the carrier. The method was successfully applied to prepare a stable pro-liposome containing 0.17% (w/w) of piperine with an encapsulation efficiency of 95.58 ± 2.91%. Moreover, the study revealed that a piperine molecule forms hydrophobic interaction with six of the adjacent phospholipids in the liposome structure, this information can be useful for researchers designing similar studies. In conclusion, organic solvent-free pro-liposome can be an alternative method in the development of DDS, and several factors could be continuously improved to fulfill the intended pro-liposome characteristic.
Collapse
|
3
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
5
|
Bashyal S, Seo JE, Keum T, Noh G, Lamichhane S, Lee S. Development, Characterization, and Ex Vivo Assessment of Elastic Liposomes for Enhancing the Buccal Delivery of Insulin. Pharmaceutics 2021; 13:pharmaceutics13040565. [PMID: 33923670 PMCID: PMC8073108 DOI: 10.3390/pharmaceutics13040565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Buccal drug delivery is a suitable alternative to invasive routes of drug administration. The buccal administration of insulin for the management of diabetes has received substantial attention worldwide. The main aim of this study was to develop and characterize elastic liposomes and assess their permeability across porcine buccal tissues. Sodium-cholate-incorporated elastic liposomes (SC-EL) and sodium-glycodeoxycholate-incorporated elastic liposomes (SGDC-EL) were prepared using the thin-film hydration method. The prepared liposomes were characterized and their ex vivo permeability attributes were investigated. The distribution of the SC-EL and SGDC-EL across porcine buccal tissues was evaluated using confocal laser scanning microscopy (CLSM). The SGDC-EL were the most superior nanocarriers since they significantly enhanced the permeation of insulin across porcine buccal tissues, displaying a 4.33-fold increase in the permeability coefficient compared with the insulin solution. Compared with the SC-EL, the SGDC-EL were better at facilitating insulin permeability, with a 3.70-fold increase in the permeability coefficient across porcine buccal tissue. These findings were further corroborated based on bioimaging analysis using CLSM. SGDC-ELs showed the greatest fluorescence intensity in buccal tissues, as evidenced by the greater shift of fluorescence intensity toward the inner buccal tissue over time. The fluorescence intensity ranked as follows: SGDC-EL > SC-EL > FITC–insulin solution. Conclusively, this study highlighted the potential nanocarriers for enhancing the buccal permeability of insulin.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-580-6655; Fax: +82-53-580-5164
| |
Collapse
|
6
|
Dispersibility of phospholipids and their optimization for the efficient production of liposomes using supercritical fluid technology. Int J Pharm 2019; 563:174-183. [PMID: 30940503 DOI: 10.1016/j.ijpharm.2019.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
Abstract
Liposomes are promising delivery vehicles and offer the added drawcard of being able to be made functional to target tissues such as cardiac muscle and cancerous cells. Current methods to manufacture liposomes need to be improved and supercritical fluid (SCF) technologies may offer a solution. Herein, the dispersibility of six different phospholipids (PLs) was determined in supercritical carbon dioxide (scCO2). 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) showed the highest post-processing dispersibility, while 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) showed no dispersibility in scCO2 at the assessed experimental conditions. The zetasizer results showed that the SCF conditions at 37 °C, 250 bar and 200 RPM for 60 min provided nanoparticles with the narrowest polydispersity index (PDI) and a spherical shape as shown by cryo-transmission electron microscopy (Cryo-TEM). The mean diameter of liposomes using the SCF method for DSPC-PEGylated and DOPC-PEGylated liposomes was 98.3 ± 3.3 nm and 124.5 ± 4.1 nm, while using the thin film method it was 153.6 ± 4.5 nm and 131.3 ± 3.4 nm, respectively. A size-based stability evaluation of the scCO2-prepared liposomes stored at different temperatures (25 °C, 4 °C and -20 °C) was compared to that of the thin film method over a period of 3 months. The current study provides a possible green alternative SCF method to preparing liposomes that is less laborious, time saving, and a low energy process.
Collapse
|
7
|
Low-Salt or Salt-Free Dyeing of Cotton Fibers with Reactive Dyes using Liposomes as Dyeing/Level-Dyeing Promotors. Sci Rep 2018; 8:13045. [PMID: 30158565 PMCID: PMC6115468 DOI: 10.1038/s41598-018-31501-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The main aim of this investigation was to promote the dyeing and level-dyeing effect of reactive dyes on cotton-fiber dyeing by encapsulating reactive dyes in liposomes as an alternative to sodium chloride. The results obtained indicated that liposomes, especially cationic liposomes, have a remarkable level-dyeing promoting effect on cotton fibers, although the dyeing promoting effect was not as good as that of sodium chloride. The optimum dyeing and level-dyeing effects were achieved at a dye-fixing temperature of 85 °C, sodium carbonate concentration of 10 g/L and dye dosage of 2% (on the basis of oven-dry cotton fibers) when liposomes were used as the dyeing and level-dyeing promoters. The combination of cationic liposomes and sodium chloride can significantly promote both the dyeing and level-dyeing of cotton fibers. These results indicated the potential of cationic liposomes as novel dyeing and level-dyeing promoters or microencapsulated dye wall materials for reactive-dye dyeing applications.
Collapse
|
8
|
Bashyal S, Lee S. Delivery of biopharmaceuticals using combination of liposome and iontophoresis: a review. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0219-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Gaur PK, Bajpai M, Mishra S, Verma A. Development of ibuprofen nanoliposome for transdermal delivery: Physical characterization,in vitro/in vivo studies, and anti-inflammatory activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:370-5. [DOI: 10.3109/21691401.2014.953631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|