1
|
Sahin AB, Karakurt S, Sezlev Bilecen D. Development of a mucoadhesive drug delivery system and its interaction with gastric cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:371-384. [PMID: 40099114 PMCID: PMC11912645 DOI: 10.3762/bjnano.16.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Drugs that are designed for local treatment of gastric diseases require increased gastric residence time for prolonged action and increased efficacy. In this study, we report a mucoadhesive drug delivery system that was developed to fulfill these requirements. Alginate nanoparticles were synthesized by water-in-oil emulsification followed by external gelation and then coated with the mucoadhesive polymer Eudragit RS100. The formulated nanoparticles had a mean size of 219 nm and positive charge. A peptide, as a model drug, was loaded onto the nanoparticles with an encapsulation efficiency of 58%. The release of the model drug from the delivery system was pH-independent and lasted for 7 days. The periodic acid-Schiff stain assay indicated 69% mucin interaction for the nanoparticles, which were also capable of diffusion through artificial mucus. The nanoparticles were not toxic to gastric epithelial cells and can be internalized by the cells within 4 h. The adsorption of nanoparticles onto mucus-secreting gastric cells was found to be correlated with cell number. The delivery system developed in this study is intended to be loaded with active therapeutic agents and has the potential to be used as an alternative drug delivery strategy for the treatment of gastric related diseases.
Collapse
Affiliation(s)
- Ahmet Baki Sahin
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080, Konya, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34596, İstanbul, Türkiye
| | - Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, 42130, Konya, Türkiye
| | - Deniz Sezlev Bilecen
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080, Konya, Türkiye
| |
Collapse
|
2
|
Gaur M, Maurya S, Akhtar MS, Yadav AB. Synthesis and Evaluation of BSA-Loaded PLGA-Chitosan Composite Nanoparticles for the Protein-Based Drug Delivery System. ACS OMEGA 2023; 8:18751-18759. [PMID: 37273604 PMCID: PMC10233659 DOI: 10.1021/acsomega.3c00738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to synthesize composite nanoparticles (NPs) based on poly(d,l-lactic-co-glycolic acid) (PLGA) and chitosan (CS) and evaluate their suitability for the delivery of protein-based therapeutic molecules. Composite NPs possess a unique property which is not exhibited by any other polymer. Unlike other polymers, only the composite NPs lead to improved transfection efficiency and sustained release of protein. The composite NP were prepared by grafting CS on the surface of PLGA NPs through EDC-NHS coupling reaction. The size of bovine serum albumin (BSA)-loaded PLGA NPs and BSA-loaded PLGA-CS composite NPs was 288 ± 3 and 363 ± 4 nm, respectively. The zeta potential of PLGA NPs is -18 ± 0.23, and that of composite particles is 19 ± 0.40, thus confirming the successful addition of CS on the surface of PLGA NPs. Composite NPs were characterized using dynamic light scattering, scanning/transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, release profile, and gel electrophoresis. The encapsulation efficiency of PLGA NPs was 88%. These composite NPs were easily uptaken by the A549 cell line with no or minimal cytotoxicity. The present study emphasizes that the composite NPs are suitable for delivery of BSA into the cells with no cytotoxicity or very little cytotoxicity, while maintaining the integrity of the encapsulated BSA.
Collapse
Affiliation(s)
- Manish Gaur
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Sarita Maurya
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Mohd. Sohail Akhtar
- Molecular
and Structural Biology Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Awadh Bihari Yadav
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
3
|
Siapoush S, Mousazadeh H, Rezaei R, Hatami B, Mazhari S, Hashemi N, Reza Zali M, Baghaei K. Oral Targeted Delivery of Imatinib by pH Responsive Copolymer Modulates Liver Fibrosis in the Mice Model. Int J Pharm 2023:123068. [PMID: 37225027 DOI: 10.1016/j.ijpharm.2023.123068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Liver fibrosis is a significant cause of morbidity and mortality without approved treatment. The therapeutic effects of Imatinib as a tyrosine kinase inhibitor on reversing liver fibrosis have already been shown. However, considering the conventional route of Imatinib administration, the amount of drug to be used is very high, and its side effects are raised. Therefore, we designed an efficient pH-sensitive polymer for the targeted delivery of Imatinib in treating a carbon tetrachloride (CCl4)-induced liver fibrosis. This nanotherapeutic system-based Vitamin A (VA)-modified Imatinib-loaded poly (lactic-co-glycolic acid)/Eudragit S100 (PLGA-ES100) has been successfully fabricated by adapting the solvent evaporation technique. The applying ES100 on the surface of our desired nanoparticles (NPs) protects drug release at the acidic pH of the gastric and guarantees the effective release of Imatinib at a higher pH of the intestine. Besides, VA-functionalized NPs could be an ideal efficient drug delivery system due to the high capacity of hepatic cell lines to absorb VA. For induction of liver fibrosis, CCL4 was intraperitoneally (IP) injected twice a week for six weeks in BALB/c mice. Oral administration of VA-targeted PLGA-ES100 NPs loaded with Rhodamine Red™ by live animal imaging showed a preferential accumulation of the selected NPs in the liver of mice. Besides, administrating targeted Imatinib-loaded NPs significantly decreased serum levels of ALT, and AST, and also reduced the expression of extracellular matrix components, including collagen I, collagen III, and α-SMA, considerably. Interestingly, histopathological evaluation of liver tissues through H&E and Masson's trichrome staining showed that oral administration of targeted Imatinib-loaded NPs reduced hepatic damage by enhancing hepatic structure condition. Also, the Sirius-red staining indicated a reduction in collagen expression during treatment with targeted NP containing Imatinib. The immunohistochemistry result on liver tissue shows a significant decrease in the expression of α-SMA in groups treated with targeted NP. In the meantime, administration of a very scarce dose of Imatinib via targeted NP caused a substantial decline in the expression of fibrosis marker genes (Collagen I, Collagen III, α-SMA). Our results confirmed that novel pH-sensitive VA-targeted PLGA-ES100 NPs could efficiently deliver Imatinib to the liver cells. Loading Imatinib in the PLGA-ES100/VA might overcome many challenges facing conventional Imatinib therapy, including gastrointestinal pH, the low concentration at the target region, and toxicity.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mousazadeh
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naimeh Hashemi
- Ludwig Boltzmann Institute for Traumatology, Research Centre in cooperation with AUVA, Donaueschingenstra Be 13, 1200 Vienna, Austria
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay. Microvasc Res 2021; 139:104251. [PMID: 34520775 DOI: 10.1016/j.mvr.2021.104251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
The target of the current investigation was the delivery of oseltamivir phosphate (OSE) into the lung adenocarcinoma tissues by means of designing nanosized, non-toxic and biocompatible pegylated Eudragit based NPs and investigating their anticancer and antiangiogenic activity. The rationale for this strategy is to provide a novel perspective to cancer treatment with OSE loaded pegylated ERS NPs under favor of smaller particle size, biocompatible feature, cationic characteristic, examining their selective effectiveness on lung cell lines (A549 lung cancer cell line and CCD-19Lu normal cell line) and examining antiangiogenic activity by in vivo CAM analysis. For this purpose, OSE encapsulated pegylated ERS based NPs were developed and investigated for zeta potential, particle size, encapsulation efficiency, morphology, DSC, FT-IR, 1H NMR analyses. In vitro release, cytotoxicity, determination apoptotic pathways and in vivo CAM assay were carried out. Considering characterizations, NPs showed smaller particle size, cationic zeta potential, relatively higher EE%, nearly spherical shape, amorphous matrix formation and prolonged release pattern (Peppas-Sahlin and Weibull model with Fickian and non-Fickian release mechanisms). Flow cytometry was used to assess the apoptotic pathways using the Annexin V-FITC/PI staining assay, FITC Active Caspase-3 staining assay, and mitochondrial membrane potential detection tests. Activations on caspase-3 pathways made us think that OSE loaded pegylated ERS NPs triggered to apoptosis using intrinsic pathway. As regards to the in vivo studies, OSE loaded pegylated ERS based NPs demonstrated strong and moderate antiangiogenic activity for ERS-OSE 2 and ERS-OSE 3, respectively. With its cationic character, smaller particle size, relative superior EE%, homogenous amorphous polymeric matrix constitution indicated using solid state tests, prolonged release manner, highly selective to the human lung adenocarcinoma cell lines, could trigger apoptosis intrinsically and effectively, possess good in vivo antiangiogenic activity, ERS-OSE 2 formulation is chosen as a promising candidate and a potent drug delivery system to treat lung cancer.
Collapse
|
5
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: Characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş, Berkman MS. Novel approaches to cancer therapy with ibuprofen-loaded Eudragit® RS 100 and/or octadecylamine-modified PLGA nanoparticles by assessment of their effects on apoptosis. Drug Dev Ind Pharm 2020; 46:1133-1149. [DOI: 10.1080/03639045.2020.1776319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Şennur Görgülü
- bMedicinal Plant, Drug and Scientific Research Application and Research Center, Anadolu University (AUBİBAM), Eskişehir, Turkey
| | - Murat Sami Berkman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Topal GR, Devrim B, Eryilmaz M, Bozkir A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul 2018; 35:533-547. [PMID: 30213209 DOI: 10.1080/02652048.2018.1523970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, ciprofloxacin hydrochloride (CIP)-loaded poly-ε-caprolactone (PCL) nanoparticles were prepared for pulmonary administration. CIP-loaded PCL nanoparticles were prepared using solid-in-oil-in-water (s/o/w) emulsion solvent evaporation method, and the effects of various formulation parameters on the physicochemical properties of the nanoparticles were investigated. PCL nanoparticles showed spherical shapes with particle sizes around 143-489 nm. Encapsulation efficiency was found to be very low because of water-solubility properties of CIP. However, the surface modification of nanoparticles with chitosan caused an increase in the encapsulation efficiency of nanoparticles. At drug release study, CIP-loaded PCL nanoparticles showed initial burst effect for 4 h and then continuously released for 72 h. Nanocomposite microparticles containing CIP-loaded PCL nanoparticles were prepared freeze-drying method and mannitol was used as carrier material. Tapped density and MMADt results show that nanocomposite microparticles have suitable aerodynamic properties for pulmonary administration. Antimicrobial efficacy investigations showed that CIP-encapsulated PCL nanoparticles and nanocomposite microparticles inhibited the growth of bacteria. Also, when the antimicrobial activity of the nanoparticles at the beginning and at the sixth month was examined, it was found that the structure of the particulate system was still preserved. These results indicated that nanocomposite microparticles containing CIP-loaded PCL nanoparticles can be used for pulmonary delivery.
Collapse
Affiliation(s)
- Gizem Rüya Topal
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| | - Burcu Devrim
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| | - Müjde Eryilmaz
- b Faculty of Pharmacy, Department of Pharmaceutical Microbiology , Ankara University , Ankara , Turkey
| | - Asuman Bozkir
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Ankara University , Ankara , Turkey
| |
Collapse
|
8
|
Lau HC, Kim A. Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0268-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Enhanced supersaturation and oral absorption of sirolimus using an amorphous solid dispersion based on Eudragit® e. Molecules 2015; 20:9496-509. [PMID: 26020699 PMCID: PMC6272523 DOI: 10.3390/molecules20069496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD) on the degradation of sirolimus in simulated gastric fluid (pH 1.2) and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1) solid dispersion had a maximum solubility of 196.7 μg/mL within 0.5 h that gradually decreased to 173.4 μg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1) solid dispersion in simulated gastric fluid (pH 1.2), owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1) solid dispersion, the sirolimus/E-SD/TPGS (1/8/1) solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC). Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.
Collapse
|