1
|
Mutlu A, Aydın Keskin G, Çıldır İ. Predicting hospital admissions for upper respiratory tract complaints: An artificial neural network approach integrating air pollution and meteorological factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:759. [PMID: 39046576 DOI: 10.1007/s10661-024-12908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory diseases and the levels of PM10 and SO2 pollutants, as well as local meteorological conditions, using data from 2017 to 2019. The objective of this study is to clarify the impact of air pollution on the well-being of the general population, specifically focusing on respiratory ailments. An ANN called a multilayer perceptron (MLP) was used. The network was trained using the Levenberg-Marquardt (LM) backpropagation algorithm. The data revealed a substantial increase in hospital admissions for upper respiratory tract diseases, amounting to a total of 11,746 cases. There were clear seasonal fluctuations, with fall having the highest number of cases of bronchitis (N = 181), sinusitis (N = 83), and upper respiratory infections (N = 194). The study also found demographic differences, with females and people aged 18 to 65 years having greater admission rates. The performance of the ANN model, measured using R2 values, demonstrated a high level of predictive accuracy. Specifically, the R2 value was 0.91675 during training, 0.99182 during testing, and 0.95287 for validating the prediction of asthma. The comparative analysis revealed that the ANN-MLP model provided the most optimal result. The results emphasize the effectiveness of ANNs in representing the complex relationships between air quality, climatic conditions, and respiratory health. The results offer crucial insights for formulating focused healthcare policies and treatments to alleviate the detrimental impact of air pollution and meteorological factors.
Collapse
Affiliation(s)
- Atilla Mutlu
- Department of Environmental Engineering, College of Engineering, Balikesir University, Balikesir, Turkey.
| | - Gülşen Aydın Keskin
- Department of Industrial Engineering, College of Engineering, Balikesir University, Balikesir, Turkey
| | - İhsan Çıldır
- Ministry of Health Edremit State Hospital, Edremit, Balikesir, Turkey
| |
Collapse
|
2
|
Kanchan S, Ogden E, Kesheri M, Skinner A, Miliken E, Lyman D, Armstrong J, Sciglitano L, Hampikian G. COVID-19 hospitalizations and deaths predicted by SARS-CoV-2 levels in Boise, Idaho wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167742. [PMID: 37852488 DOI: 10.1016/j.scitotenv.2023.167742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The viral load of COVID-19 in untreated wastewater from Idaho's capital city Boise, ID (Ada County) has been used to predict changes in hospital admissions (statewide in Idaho) and deaths (Ada County) using distributed fixed lag modeling and artificial neural networks (ANN). The wastewater viral counts were used to determine the lag time between peaks in wastewater viral counts and COVID-19 hospitalizations as well as deaths (14 and 23 days, respectively). Quantitative measurement of SARS-CoV-2 viral RNA counts in the untreated wastewater was determined three times a week using RT-qPCR over a span of 13 months. To mitigate the effects of PCR inhibitors in wastewater, a series of dilution tests were conducted, and the 1/4 dilution was used to generate the most successful model. Wastewater SARS-CoV-2 viral RNA counts and hospitalization from June 7, 2021 to December 29, 2021 were used as training data to predict hospitalizations; and wastewater SARS-CoV-2 viral RNA counts and deaths from June 7, 2021 to December 20, 2021 were used as training data to predict deaths. These training data were used to make predictive ANN models for future hospitalizations and deaths. To the best of our knowledge, this is the first report of prediction of deaths from COVID-19 based on wastewater SARS-CoV-2 viral RNA counts using machine learning-based multilayered ANN. The applied modeling demonstrates that wastewater surveillance data can be combined with hospitalizations and death data to generate machine learning-based ANN models that predict future COVID-19 hospital admissions and deaths, providing an early warning for medical response teams and healthcare policymakers.
Collapse
Affiliation(s)
- Swarna Kanchan
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America; Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701, United States of America
| | - Ernie Ogden
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Minu Kesheri
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America; Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25701, United States of America
| | - Alexis Skinner
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Erin Miliken
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Devyn Lyman
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Jacob Armstrong
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Lawrence Sciglitano
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America
| | - Greg Hampikian
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, United States of America.
| |
Collapse
|
3
|
Cheng C, Jiang WM, Fan B, Cheng YC, Hsu YT, Wu HY, Chang HH, Tsou HH. Real-time forecasting of COVID-19 spread according to protective behavior and vaccination: autoregressive integrated moving average models. BMC Public Health 2023; 23:1500. [PMID: 37553650 PMCID: PMC10408098 DOI: 10.1186/s12889-023-16419-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mathematical and statistical models are used to predict trends in epidemic spread and determine the effectiveness of control measures. Automatic regressive integrated moving average (ARIMA) models are used for time-series forecasting, but only few models of the 2019 coronavirus disease (COVID-19) pandemic have incorporated protective behaviors or vaccination, known to be effective for pandemic control. METHODS To improve the accuracy of prediction, we applied newly developed ARIMA models with predictors (mask wearing, avoiding going out, and vaccination) to forecast weekly COVID-19 case growth rates in Canada, France, Italy, and Israel between January 2021 and March 2022. The open-source data was sourced from the YouGov survey and Our World in Data. Prediction performance was evaluated using the root mean square error (RMSE) and the corrected Akaike information criterion (AICc). RESULTS A model with mask wearing and vaccination variables performed best for the pandemic period in which the Alpha and Delta viral variants were predominant (before November 2021). A model using only past case growth rates as autoregressive predictors performed best for the Omicron period (after December 2021). The models suggested that protective behaviors and vaccination are associated with the reduction of COVID-19 case growth rates, with booster vaccine coverage playing a particularly vital role during the Omicron period. For example, each unit increase in mask wearing and avoiding going out significantly reduced the case growth rate during the Alpha/Delta period in Canada (-0.81 and -0.54, respectively; both p < 0.05). In the Omicron period, each unit increase in the number of booster doses resulted in a significant reduction of the case growth rate in Canada (-0.03), Israel (-0.12), Italy (-0.02), and France (-0.03); all p < 0.05. CONCLUSIONS The key findings of this study are incorporating behavior and vaccination as predictors led to accurate predictions and highlighted their significant role in controlling the pandemic. These models are easily interpretable and can be embedded in a "real-time" schedule with weekly data updates. They can support timely decision making about policies to control dynamically changing epidemics.
Collapse
Affiliation(s)
- Chieh Cheng
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Ming Jiang
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan
| | - Byron Fan
- Brown University, RI, Providence, USA
| | - Yu-Chieh Cheng
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan
| | - Ya-Ting Hsu
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan
| | - Hsiao-Yu Wu
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan
| | - Hsiao-Han Chang
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan.
- Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Wathore R, Rawlekar S, Anjum S, Gupta A, Bherwani H, Labhasetwar N, Kumar R. Improving performance of deep learning predictive models for COVID-19 by incorporating environmental parameters. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:69-77. [PMID: 35431596 PMCID: PMC8990533 DOI: 10.1016/j.gr.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has severely crippled the economy on a global scale. Effective and accurate forecasting models are essential for proper management and preparedness of the healthcare system and resources, eventually aiding in preventing the rapid spread of the disease. With the intention to provide better forecasting tools for the management of the pandemic, the current research work analyzes the effect of the inclusion of environmental parameters in the forecasting of daily COVID-19 cases. Three univariate variants of the long short-term memory (LSTM) model (basic/vanilla, stacked, and bi-directional) were employed for the prediction of daily cases in 9 cities across 3 countries with varying climatic zones (tropical, sub-tropical, and frigid), namely India (New Delhi and Nagpur), USA (Yuma and Los Angeles) and Sweden (Stockholm, Skane, Uppsala and Vastra Gotaland). The results were compared to a basic multivariate LSTM model with environmental parameters (temperature (T) and relative humidity (RH)) as additional inputs. Periods with no or minimal lockdown were chosen specifically in these cities to observe the uninhibited spread of COVID-19 and explore its dependence on daily environmental parameters. The multivariate LSTM model showed the best overall performance; the mean absolute percentage error (MAPE) showed an average of 64% improvement from other univariate models upon the inclusion of the above environmental parameters. Correlation with temperature was generally positive for the cold regions and negative for the warm regions. RH showed mixed correlations, most likely driven by its temperature dependence and effect of allied local factors. The results suggest that the inclusion of environmental parameters could significantly improve the performance of LSTMs for predicting daily cases of COVID-19, although other positive and negative confounding factors can affect the forecasting power.
Collapse
Affiliation(s)
- Roshan Wathore
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Samyak Rawlekar
- Indian Institute of Technology (IIT) Dharwad, Dharwad 580 011, Karnataka, India
| | - Saima Anjum
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ankit Gupta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hemant Bherwani
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Nitin Labhasetwar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Council of Scientific and Industrial Research (CSIR), Anusandhan Bhawan, 2 Rafi Ahmed Kidwai Marg, New Delhi 110001, India
| |
Collapse
|
5
|
Rane R, Dubey A, Rasool A, Wadhvani R. Data Mining Based Techniques for Covid-19 Predictions. PROCEDIA COMPUTER SCIENCE 2023; 218:210-219. [PMID: 36743794 PMCID: PMC9886325 DOI: 10.1016/j.procs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
COVID-19 is a pandemic that has resulted in numerous fatalities and infections in recent years, with a rising tendency in both the number of infections and deaths and the pace of recovery. Accurate forecasting models are important for making accurate forecasts and taking relevant actions. As a result, accurate short-term forecasting of the number of new cases that are contaminated and recovered is essential for making the best use of the resources at hand and stopping or delaying the spread of such illnesses. This paper shows the various techniques for forecasting the covid-19 cases. This paper classifies the various models according to their category and shows the merits and demerits of various fore-casting techniques. The research provides insight into potential issues that may arise during the forecasting of covid-19 instances for predicting the positive, negative, and death cases in this pandemic. In this paper, numerous forecasting techniques and their categories have been studied. The goal of this work is to aggregate the findings of several forecasting techniques to aid in the fight against the pandemic.
Collapse
Affiliation(s)
- Rahul Rane
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Aditya Dubey
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Akhtar Rasool
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| | - Rajesh Wadhvani
- Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal and 462003, India
| |
Collapse
|
6
|
A Review on Deep Sequential Models for Forecasting Time Series Data. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2022. [DOI: 10.1155/2022/6596397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequential (DS) models are extensively employed for forecasting time series data since the dawn of the deep learning era, and they provide forecasts for the values required in subsequent time steps. DS models, unlike other traditional statistical models for forecasting time series data, can learn hidden patterns in temporal sequences and have the memorizing data from prior time points. Given the widespread usage of deep sequential models in several domains, a comprehensive study describing their applications is necessary. This work presents a comprehensive review of contemporary deep learning time series models, their performance in diverse domains, and an investigation of the models that were employed in various applications. Three deep sequential models, namely, artificial neural network (ANN), long short-term memory (LSTM), and temporal-conventional neural network (TCNN) along with their applications for forecasting time series data, are elaborated. We showed a comprehensive comparison between such models in terms of application fields, model structure and activation functions, optimizers, and implementation, with a goal of learning more about the optimal model used. Furthermore, the challenges and perspectives of future development of deep sequential models are presented and discussed. We conclude that the LSTM model is widely employed, particularly in the form of a hybrid model, in which the most accurate predictions are made when the shape of hybrids is used as the model.
Collapse
|