1
|
Muzenda T, Shoko R, Chimwanda P, Ndlovu J. Elemental analysis of Fadogia ancylantha leaves used as a nutraceutical in Mashonaland West Province, Zimbabwe. Open Life Sci 2023; 18:20220695. [PMID: 37791061 PMCID: PMC10543704 DOI: 10.1515/biol-2022-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 10/05/2023] Open
Abstract
In this study, the concentrations of the essential elements to the human body N, K, Mg, P, Ca, Fe, Mn, and Zn of the fermented and non-fermented Fadogia ancylantha leaf samples were analysed to assess their nutritional value in two different areas in Zimbabwe: Mhangura (Mashonaland West, Province) and Alaska (Mashonaland West Province). Atomic absorption spectroscopy and ultraviolet spectrophotometry techniques were used to measure the concentrations of the minerals. The concentrations of manganese were significantly high (p < 0.05) in non-fermented treatments, with Mhangura samples having 0.447 mg/g and Alaska samples having 0.453 mg/g. Iron was high in fermented samples with Mhangura samples having 0.245 mg/g and Alaska samples having 0.270 mg/g. The concentrations of manganese and iron in Fadogia ancylantha can be used to supplement the recommended daily doses in pregnant, menstruating, and lactating women. The study, therefore, recommends that Fadogia ancylantha be used as a nutraceutical for the supplementation of iron and manganese.
Collapse
Affiliation(s)
- Tom Muzenda
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| | - Peter Chimwanda
- Department of Mathematics, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| |
Collapse
|
2
|
Gupta D, Boora A, Thakur A, Gupta TK. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. ENVIRONMENTAL RESEARCH 2023; 231:116316. [PMID: 37270084 DOI: 10.1016/j.envres.2023.116316] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India.
| | - Anuj Boora
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Amisha Thakur
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Pin 201301, India
| |
Collapse
|
3
|
Paul TK, Jalil MA, Repon MR, Alim MA, Islam T, Rahman ST, Paul A, Rhaman M. Mapping the Progress in Surface Plasmon Resonance Analysis of Phytogenic Silver Nanoparticles with Colorimetric Sensing Applications. Chem Biodivers 2023; 20:e202300510. [PMID: 37471642 DOI: 10.1002/cbdv.202300510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.
Collapse
Affiliation(s)
- Tamal Krishna Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Reazuddin Repon
- Laboratory of Plant Physiology, Nature Research Center, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424, Kaunas, Lithuania
| | - Md Abdul Alim
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Sheikh Tamjidur Rahman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ayon Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
4
|
Shukla S, Mehata MS. Selective picomolar detection of carcinogenic chromium ions using silver nanoparticles capped via biomolecules from flowers of Plumeria obtusa. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Bala A, Rani G, Kumar N, Ahlawat R. Catalytic and antioxidant activity of silver nanoparticles fabricated by Neolamarckia cadamba bark extract. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1979-1987. [PMID: 37218063 DOI: 10.1080/15226514.2023.2214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant parts have unfathomable potential in the synthesis of nanoparticles. The current study was designed for the photosynthesis of silver nanoparticles (NC-AgNPs) using bark extract of N. cadamba. Different analytical methods were used to characterize the synthesized nanoparticles. HR-TEM analysis identifies the formation of multi-shaped NC-AgNPs like spherical, quasi-spherical, rod-shaped, trigonal, square, pentagonal, and hexagonal with a size range of 18-91 nm. The crystallize size of NC-AgNPs was found to be 27.6 nm. The catalytic effectiveness of NC-AgNPs in degrading Crystal violet (CV) dye is remarkable. Important parameters such as the effect of catalyst dose and pH were investigated. Dose-dependentantioxidant activity of NC-AgNPs was determined by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. Low-cost synthesis and eco-friendly reagents were the salient features that made NC-AgNPs more attractive toward catalytic and antioxidant activities.
Collapse
Affiliation(s)
- Anu Bala
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Gita Rani
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Naveen Kumar
- Department of Chemistry, M.D. University, Rohtak, India
| | - Rachna Ahlawat
- Department of Physics, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
6
|
Bala A, Rani G. Green synthesis of AgNPs using Delonix regia bark for potential catalytic and antioxidant applications. Microsc Res Tech 2023. [PMID: 36869861 DOI: 10.1002/jemt.24310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Nanoparticle synthesis from plant resources has recently gained significant impact due to its low cost, simple equipment requirements, and ease of availability. In this work, DR-AgNPs were synthesized using bark extract of Delonix regia (D. regia) plant under microwave irradiation. The formation of DR-AgNPs has been confirmed with UV-Vis, XRD, FTIR, FESEM, HRTEM, EDS, DLS, and zeta potential analysis. Catalytic and antioxidant activities were tested on synthesized spherical nanoparticles with a size range of 10-48 nm. The effects of pH and catalyst dosage on the methylene blue (MB) dye degradation were carried out. It was observed from the treatment results that 95% MB dye degradation efficiency was achieved within 4 min with a degradation rate constant of 0.772 min-1 . The synthesized nanoparticles showed a strong antioxidant property when analyzed by a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The calculated IC50 value for DR-AgNPs was 37.1 ± 0.12 μg mL-1 . Therefore, DR-AgNPs are excellent in both catalytic and antioxidant activities when compared to previously reported works. HIGHLIGHTS: Green synthesis of silver nanoparticles (DR-AgNPs) using Delonix regia bark extract. The catalytic activity of DR-AgNPs is remarkable against Methylene Blue. DR-AgNPs also have a strong DPPH radical antioxidant effect. Short degradation time, high degradation rate constant, and a good scavenging activity are key features of this study compared to previously reported works.
Collapse
Affiliation(s)
- Anu Bala
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Gita Rani
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
7
|
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023; 11:369. [PMID: 36838334 PMCID: PMC9961011 DOI: 10.3390/microorganisms11020369] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, and DNA damage in bacteria, ultimately leading to bacterial death. AgNPs have also been found to alter the adhesion of bacterial cells to prevent biofilm formation. The benefits of using AgNPs in medicine are, to some extent, counter-weighted by their toxic effect on humans and the environment. In this review, we have compiled recent studies demonstrating the antibacterial activity of AgNPs, and we are discussing the known mechanisms of action of AgNPs against bacterial pathogens. Ongoing clinical trials involving AgNPs are briefly presented. A particular focus is placed on the mechanism of interaction of AgNPs with bacterial biofilms, which are a significant pathogenicity determinant. A brief overview of the use of AgNPs in other medical applications (e.g., diagnostics, promotion of wound healing) and the non-medical sectors is presented. Finally, current drawbacks and limitations of AgNPs use in medicine are discussed, and perspectives for the improved future use of functionalized AgNPs in medical applications are presented.
Collapse
Affiliation(s)
- Pragati Rajendra More
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Bio Sustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
8
|
Bold BE, Urnukhsaikhan E, Mishig-Ochir T. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, anti-inflammatory properties and their burn wound healing efficacy. Front Chem 2022; 10:972534. [PMID: 36072703 PMCID: PMC9441807 DOI: 10.3389/fchem.2022.972534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The current study aims to develop a novel burn wound ointment consisting of sheep's tail ointment loaded with AgNP. The AgNP in the ointment serves as an antibacterial, antioxidant and anti-inflammatory agent. The AgNP was developed via the biological method with the assistance of the medicinal plant Rhodiola rosea. The characterization of AgNP was assessed using UV-Vis spectroscopy, FTIR, Zeta Potential, XRD, PCCS, SEM, and EDX techniques. The formation of AgNP was confirmed by UV-Vis spectrum at the absorbance of ∼430 nm, and the biomolecules responsible for reducing and capping the AgNP were characterized by FTIR analysis. The stability of AgNP was determined with Zeta potential, which revealed a highly stable colloidal solution with a surface charge of -68.38 ± 3.4 mV. The synthesized AgNP had a face-centered cubic structure with a crystallite size of 23 nm and average grain size of 67.5 nm. The SEM image showed a fairly monodisperse 20 nm-sized spherical-shaped AgNP. The synthesized AgNP contained high purity of the silver, and a low concentration of AgNP inhibited both Gram-positive and Gram-negative bacteria. Moreover, the scavenging activity of AgNP was investigated using DPPH and H2O2 scavenging assay, and the results revealed a dose-dependent antioxidant activity with the highest activity at a concentration of 450 μg/ml. Finally, the burn wound healing effect was evaluated by applying the AgNP-loaded ointment to the wound site of BALB/c mice. The in-vivo studies confirmed that AgNP-loaded ointment reduced the wound size, decreased the epidermis layer, and lowered mast cell migration compared to untreated burn wounds. And the synthesized AgNP regulated both pro-inflammatory and anti-inflammatory gene expression, thereby promoting burn wound closure on BALB/c mice. The developed AgNP-loaded ointment has the potential to be applied in the biomedical field.
Collapse
Affiliation(s)
- Bum-Erdene Bold
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Enerelt Urnukhsaikhan
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsogbadrakh Mishig-Ochir
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
9
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
10
|
Ruby, Aryan, Mehata MS. Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract. Dalton Trans 2022; 51:2726-2736. [PMID: 35080554 DOI: 10.1039/d1dt03592d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An environmentally friendly, green synthesis process has been adopted to synthesize silver nanoparticles (AgNPs) in an aqueous solution from a new remedial plant. Breynia vitis-idaea leaves act like natural capping and reducing agents. The resulting AgNPs were characterized and analyzed using different characterization techniques, such as UV-Vis spectroscopy, X-ray diffraction, zeta potential, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The UV-Vis absorption spectrum showed high stability and a surface plasmon resonance (SPR) peak around 430 nm. The effects of several processing variables, such as reaction time, temperature, concentration and pH, were analyzed. High temperature and alkaline pH intensify the ability to form flower-shaped AgNPs with enhanced properties. AgNPs were investigated for antibacterial activity against Gram-negative E. coli bacterial strains with a 10 mm zone of inhibition. These AgNPs showed dye degradation up to 88% when an aqueous crystal violet dye solution was mixed with AgNPs as the catalyst. Further, AgNPs alone were effectively used in the detection of hydrogen peroxide (H2O2) in an aqueous medium with a LOD (limit of detection) of 21 μM, limit of quantification (LOQ) of 64 μM and a decrease in absorption intensity up to 89%. Based on these results, these AgNPs were effectively used in numerous fields, such as biomedical, water purification, antibacterial and sensing of H2O2.
Collapse
Affiliation(s)
- Ruby
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| | - Aryan
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| | - Mohan Singh Mehata
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| |
Collapse
|
11
|
Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep 2021; 11:21047. [PMID: 34702916 PMCID: PMC8548519 DOI: 10.1038/s41598-021-00520-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
In recent years’ synthesis of metal nanoparticle using plants has been extensively studied and recognized as a non-toxic and efficient method applicable in biomedical field. The aim of this study is to investigate the role of different parts of medical plant Carduus crispus on synthesizing silver nanoparticles and characterize the produced nanoparticle. Our study showed that silver nanoparticles (AgNP) synthesized via whole plant extract exhibited a blue shift in absorption spectra with increased optical density, which correlates to a high yield and small size. Also, the results of zeta potential, X-ray diffraction, photon cross-correlation spectroscopy analysis showed the surface charge of − 54.29 ± 4.96 mV (AgNP-S), − 42.64 ± 3.762 mV (AgNP-F), − 46.02 ± 4.17 mV (AgNP-W), the crystallite size of 36 nm (AgNP-S), 13 nm (AgNP-F), 14 nm (AgNP-W) with face-centered cubic structure and average grain sizes of 145.1 nm, 22.5 nm and 99.6 nm. Another important characteristic, such as elemental composition and constituent capping agent has been determined by energy-dispersive X-ray spectroscopy and Fourier transform infrared. The silver nanoparticles were composed of ~ 80% Ag, ~ 15% K, and ~ 7.5% Ca (or ~ 2.8% P) elements. Moreover, the results of the FTIR measurement suggested that the distinct functional groups present in both AgNP-S and AgNP-F were found in AgNP-W. The atomic force microscopy analysis revealed that AgNP-S, AgNP-F and AgNP-W had sizes of 131 nm, 33 nm and 70 nm respectively. In addition, the biosynthesized silver nanoparticles were evaluated for their cytotoxicity and antibacterial activity. At 17 µg/ml concentration, AgNP-S, AgNP-F and AgNP-W showed very low toxicity on HepG2 cell line but also high antibacterial activity. The silver nanoparticles showed antibacterial activity on both gram-negative bacterium Escherichia coli (5.5 ± 0.2 mm to 6.5 ± 0.3 mm) and gram-positive bacterium Micrococcus luteus (7 ± 0.4 mm to 7.7 ± 0.5 mm). Our study is meaningful as a first observation indicating the possibility of using special plant organs to control the characteristics of nanoparticles.
Collapse
|
12
|
Apoptotic Signalling of Huh7 Cancer Cells by Biofabricated Zinc Oxide Nanoparticles. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01852-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|