1
|
Muraro PA, Zito A, Signori A, Sormani MP, Rigoni E, Pollidoro F, Bergamaschi R, Mariottini A, Malik O, Nandoskar A, Singh-Curry V, Mehra V, Kazmi M, Gabriel I, Silber E, Nicholas R, Scalfari A. Effectiveness of Autologous Hematopoietic Stem Cell Transplantation versus Alemtuzumab and Ocrelizumab in Relapsing Multiple Sclerosis: A Single Center Cohort Study. Ann Neurol 2025. [PMID: 40251896 DOI: 10.1002/ana.27247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE To compare clinical and radiological outcomes among relapsing multiple sclerosis patients treated with autologous hematopoietic stem cell transplantation (AHSCT), alemtuzumab (ATZ), and ocrelizumab (OCR). METHODS From a London (UK) hospital-based observational cohort, modeled data were obtained from 621 relapsing-remitting multiple sclerosis patients, who were treated with AHSCT (n = 103), ATZ (n = 204), and OCR (n = 314), and were followed up for 43, 43, and 32 median months, respectively. The annualized relapse rate, new magnetic resonance imaging (MRI) lesions, and disability progression on Expanded Disability Status Scale were assessed. RESULTS AHSCT showed superior efficacy compared with ATZ and OCR. After 5-year follow up, the mean annualized relapse rate (0.026 vs 0.087; p < 0.001), the risk of relapses (HR 0.29, 95% CI 0.13-0.63; p = 0.002), and of MRI activity (HR 0.33, 95% CI 0.15-0.72; p = 0.006) were significantly lower in AHSCT versus ATZ group. Compared with OCR, after 3-year follow-up AHSCT showed a significantly lower annualized relapse rate (0.028 vs 0.073; p = 0.02) and a trend to reduced risk of relapse (HR 0.45, 95% CI 0.18-1.14; p = 0.09), but similar low rates (6%) of new MRI activity (HR 0.86, 95% CI 0.28-2.67; p = 0.80). In addition, there was a similar risk of Expanded Disability Status Scale progression in AHSCT, and both ATZ (HR 1.19, 95% CI 0.71-2.00; p = 0.50) and OCR (HR 1.08, 95% CI 0.57-2.04; p = 0.82) groups. INTERPRETATION AHSCT was followed by greater prevention of relapses compared with ATZ and OCR, and suppressed more profoundly MRI activity than ATZ, but similarly to OCR, albeit with shorter follow up. The risk of accumulating disability was similar among the treated groups. Studies with larger sample sizes and longer follow up may enable confirmation of these findings or detection of any additional differential effects. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Paolo Antonio Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Antonio Zito
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Scientific Institute for research, hospitalisation, and Healthcare, University hospital San Martino, Genoa, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Scientific Institute for research, hospitalisation, and Healthcare, University hospital San Martino, Genoa, Italy
| | - Eleonora Rigoni
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Pollidoro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Alice Mariottini
- Department of Neurosciences, University of Florence, Careggi Hospital, Florence, Italy
| | | | | | | | - Varun Mehra
- Department of Hematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Majid Kazmi
- Department of Hematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Ian Gabriel
- Center of Hematology, Faculty of Medicine, Imperial College Healthcare Trust, London, UK
| | - Eli Silber
- Department of Neurology, Kings College Hospital NHS Foundation Trust, London, UK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Antonio Scalfari
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Muraro PA, Mariottini A, Greco R, Burman J, Iacobaeus E, Inglese M, Snowden JA, Alexander T, Amato MP, Bø L, Boffa G, Ciccarelli O, Cohen JA, Derfuss T, Farge D, Freedman MS, Gaughan M, Heesen C, Kazmi M, Kirzigov K, Ljungman P, Mancardi G, Martin R, Mehra V, Moiola L, Saccardi R, Tintoré M, Stankoff B, Sharrack B. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis and neuromyelitis optica spectrum disorder - recommendations from ECTRIMS and the EBMT. Nat Rev Neurol 2025; 21:140-158. [PMID: 39814869 DOI: 10.1038/s41582-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a treatment option for relapsing forms of multiple sclerosis (MS) that are refractory to disease-modifying therapy (DMT). AHSCT after failure of high-efficacy DMT in aggressive forms of relapsing-remitting MS is a generally accepted indication, yet the optimal placement of this approach in the treatment sequence is not universally agreed upon. Uncertainties also remain with respect to other indications, such as in rapidly evolving, severe, treatment-naive MS, progressive MS, and neuromyelitis optica spectrum disorder (NMOSD). Furthermore, treatment and monitoring protocols, rehabilitation and other supportive care before and after AHSCT need to be optimized. To address these issues, we convened a European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop in partnership with the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party, in which evidence and key questions were presented and discussed by experts in these diseases and in AHSCT. Based on the workshop output and subsequent written interactions, this Consensus Statement provides practical guidance and recommendations on the use of AHSCT in MS and NMOSD. Recommendations are based on the available evidence, or on consensus when evidence was insufficient. We summarize the key evidence, report the final recommendations, and identify areas for further research.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Careggi University Hospital, Florence, Italy
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Joachim Burman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatology Research Centre, Berlin - A Leibniz Institute, Berlin, Germany
| | - Maria Pia Amato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, and Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University of Basel, Basel, Switzerland
| | - Dominique Farge
- Internal Medicine Unit (UF04) CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire; Saint-Louis Hospital, AP-HP, Paris-Cite University, Paris, France
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mark S Freedman
- University of Ottawa, Department of Medicine Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maria Gaughan
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Majid Kazmi
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- London Bridge Hospital, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Kirill Kirzigov
- Nikolay Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Per Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
- Cellerys AG Schlieren, Schlieren, Switzerland
| | - Varun Mehra
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia, Department of Neurology, Barcelona, Spain
- Vall d'Hebron University Hospital, Vall d Hebron Research Institute, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Universitat de Vic (UVIC-UCC), Vic, Spain
| | - Bruno Stankoff
- Sorbonne Université, ICM, Paris Brain Institute, CNRS, Inserm, Paris, France
- Neurology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Basil Sharrack
- Department of Neuroscience, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield NIHR Translational Neuroscience BRC, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Burt RK, Alexander T. Hematopoietic stem cell transplantation for multiple sclerosis: no inflammation, no response. Eur J Neurol 2025; 32:e16565. [PMID: 39691039 DOI: 10.1111/ene.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Richard K Burt
- Northwestern University, Chicago, Illinois, USA
- Scripps hematology, La Jolla, California, USA
- Genani Corporation, Chicago, Illinois, USA
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- EBMT Autoimmune Disease Working Party (EBMT), Berlin, Germany
| |
Collapse
|
4
|
Braun B, Fischbach F, Pfeffer LK, Richter J, Janson D, Kröger NM, Mariottini A, Heesen C, Häußler V. Exploring the therapeutic potential of autologous hematopoietic stem cell transplantation in progressive multiple sclerosis-a systematic review. Eur J Neurol 2024; 31:e16427. [PMID: 39104136 PMCID: PMC11555148 DOI: 10.1111/ene.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to determine the value of autologous haematopoietic stem cell transplantation (aHSCT) as a therapeutic intervention for progressive multiple sclerosis (PMS) based on a systematic review of the current literature. METHODS All studies from the databases PubMed and Google Scholar published in English before February 2024 which provided individual data for PMS patients were systematically reviewed. PICO was defined as population (P), primary progressive MS and secondary progressive MS patients; intervention (I), treatment with aHSCT; comparison (C), none, disease-modifying therapy treated/relapsing-remitting MS cohorts if available; outcome (O), transplant-related mortality, progression-free survival (PFS) and no evidence of disease activity. RESULTS A total of 15 studies met the criteria including 665 patients with PMS (74 primary progressive MS, 591 secondary progressive MS) and 801 patients with relapsing-remitting MS as controls. PFS data were available for 647 patients. PMS patients showed more severe disability at baseline than relapsing-remitting MS patients. The average transplant-related mortality for PMS in 10 studies was 1.9%, with 10 deaths in 528 patients. PFS ranged from 0% to 78% in PMS groups 5 years after treatment initiation, demonstrating a high variability. No evidence of disease activity scores at 5 years ranged from 0% to 75%. CONCLUSION Based on the available data, aHSCT does not halt progression in people with PMS. However, there appears to be evidence of improved outcome in selected patients. Due to the heterogeneity of the available data, more comprehensive clinical trials assessing the efficacy of aHSCT across different patient groups are urgently needed to reduce variability and improve patient stratification.
Collapse
Affiliation(s)
- Bente Braun
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Johanna Richter
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dietlinde Janson
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus M. Kröger
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
- Department Neurology IICareggi University HospitalFlorenceItaly
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
5
|
Muhie NS, Tegegne AS. Determinants of hemoglobin level and time to default from Highly Active Antiretroviral Therapy (HAART) for adult clients living with HIV under treatment; a retrospective cohort study design. Sci Rep 2024; 14:14929. [PMID: 38942753 PMCID: PMC11213870 DOI: 10.1038/s41598-024-62952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
HIV/AIDS is one of the most devastating infectious diseases affecting humankind all over the world and its impact goes beyond public health problems. This study was conducted to investigate the joint predictors of hemoglobin level and time to default from treatment for adult clients living with HIV/AIDS under HAART at the University of Gondar Comprehensive and Specialized Hospital, North-west Ethiopia. The study was conducted using a retrospective cohort design from the medical records of 403 randomly selected adult clients living with HIV whose follow-ups were from September 2015 to March 2022. Hemoglobin level was projected using Sahli's acid-hematin method. Hence, the hemoglobin tube was filled with N/10 hydrochloric acid up to 2 g % marking and the graduated tube was placed in Sahli's hemoglobin meter. The blood samples were collected using the finger-pick method, considering 22 G disposable needles. The health staff did this. From a total of 403 adult patients living with HIV/AIDS included in the current study, about 44.2% defaulted from therapy. The overall mean and median estimated survival time of adult clients under study were 44.3 and 42 months respectively. The patient's lymphocyte count (AHR = 0.7498, 95% CI: (0.7411: 0.7587), p-value < 0.01), The weight of adult patients living with HIV/AIDS (AHR = 0.9741, 95% CI: (0.9736: 0.9747), p-value = 0.012), sex of adult clients (AHR = 0.6019, 95% CI: (0.5979, 0.6059), p-value < 0.01), WHO stages III compared to Stage I (AHR = 1.4073, 95% CI: (1.3262, 1.5078), p-value < 0.01), poor adherence level (AHR = 0.2796, 95% CI: (0.2082, 0.3705) and p-value < 0.01), bedridden patients (AHR = 1.5346, 95% CI: (1.4199, 1.6495), p-value = 0.008), and opportunistic infections (AHR = 0.2237, 95% CI: (0.0248, 0.4740), p-value = 0.004) had significant effect on both hemoglobin level and time to default from treatment. Similarly, other co-morbidity conditions, disclosure status of the HIV disease, and tobacco and alcohol addiction had a significant effect on the variables of interest. The estimate of the association parameter in the slope value of Hgb level and time default was negative, indicating that the Hgb level increased as the hazard of defaulting from treatment decreased. A patient with abnormal BMI like underweight, overweight, or obese was negatively associated with the risk of anemia (lower hemoglobin level). As a recommendation, more attention should be given to those patients with abnormal BMI, patients with other co-morbidity conditions, patients with opportunistic infections, and low lymphocytes, and bedridden and ambulatory patients. Health-related education should be given to adult clients living with HIV/AIDS to be good adherents for medical treatment.
Collapse
Affiliation(s)
- Nurye Seid Muhie
- Department of Statistics, Mekidela Amba University, Tulu Awulia, Ethiopia
| | | |
Collapse
|
6
|
Nawar AA, Farid AM, Wally R, Tharwat EK, Sameh A, Elkaramany Y, Asla MM, Kamel WA. Efficacy and safety of stem cell transplantation for multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2024; 14:12545. [PMID: 38822024 PMCID: PMC11143245 DOI: 10.1038/s41598-024-62726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune neurological disease affecting patients' motor, sensory, and visual performance. Stem Cell Transplantation (SCT) is a medical intervention where a patient is infused with healthy stem cells with the purpose of resetting their immune system. SCT shows remyelinating and immunomodulatory functions in MS patients, representing a potential therapeutic option. We conducted this systematic review and meta-analysis that included randomized control trials (RCTs) of SCT in MS patients to investigate its clinical efficacy and safety, excluding observational and non-English studies. After systematically searching PubMed, Web of Science, Scopus, and Cochrane Library until January 7, 2024, nine RCTs, including 422 patients, were eligible. We assessed the risk of bias (ROB) in these RCTs using Cochrane ROB Tool 1. Data were synthesized using Review Manager version 5.4 and OpenMeta Analyst software. We also conducted subgroup and sensitivity analyses. SCT significantly improved patients expanded disability status scale after 2 months (N = 39, MD = - 0.57, 95% CI [- 1.08, - 0.06], p = 0.03). SCT also reduced brain lesion volume (N = 136, MD = - 7.05, 95% CI [- 10.69, - 3.4], p = 0.0002). The effect on EDSS at 6 and 12 months, timed 25-foot walk (T25-FW), and brain lesions number was nonsignificant. Significant adverse events (AEs) included local reactions at MSCs infusion site (N = 25, RR = 2.55, 95% CI [1.08, 6.03], p = 0.034) and hematological disorders in patients received immunosuppression and autologous hematopoietic SCT (AHSCT) (N = 16, RR = 2.33, 95% CI [1.23, 4.39], p = 0.009). SCT can improve the disability of MS patients and reduce their brain lesion volume. The transplantation was generally safe and tolerated, with no mortality or significant serious AEs, except for infusion site reactions after mesenchymal SCT and hematological AEs after AHSCT. However, generalizing our results is limited by the sparse number of RCTs conducted on AHSCT. Our protocol was registered on PROSPERO with a registration number: CRD42022324141.
Collapse
Affiliation(s)
| | | | - Rim Wally
- Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Engy K Tharwat
- Bioinformatics Group, Centre for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Ahmed Sameh
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Walaa A Kamel
- Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Volz T, Sippel A, Fischbach F, Richter J, Willison AG, Häußler V, Heesen C. "A second birthday"? Experiences of persons with multiple sclerosis treated with autologous hematopoietic stem cell transplantation-a qualitative interview study. Front Neurol 2024; 15:1384551. [PMID: 38751886 PMCID: PMC11094363 DOI: 10.3389/fneur.2024.1384551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction and objective Autologous hematopoietic stem cell transplantation (aHSCT) is a promising treatment option for persons with multiple sclerosis (pwMS). Patients undergoing aHSCT face unique challenges in all aspects of life. In this study, we explored the lived experiences of pwMS undergoing aHSCT. Methods Semi-structured interviews of 12 pwMS treated with aHSCT were conducted using a maximum variation sampling strategy. Interviews were transcribed verbatim and analyzed thematically using inductive and deductive categories. Results Three major themes were identified: (1) preparing for aHSCT, (2) experiencing the procedure, and (3) post-treatment time. A difficult decision-making process, organizational effort, and funding difficulties characterized the preparation for transplantation. AHSCT was seen as a life-changing event accompanied by both psychological and physical stress, with an associated feeling of regaining control. The transplantation had a lasting positive effect on the lives of the interviewed pwMS. However, the early post-treatment time was characterized by successes and failures alike. Particularly the independently organized medical aftercare was perceived as challenging. Retrospective revaluation has led most pwMS to wish for earlier information provision about the treatment option of aHSCT during their treatment history. Conclusion AHSCT had a clear impact on patients' physical and psycho-social health, influencing their perception of life and its quality. Assessing and attending to unmet needs of patients before, during, and after transplantation may positively influence their experience of aHSCT.
Collapse
Affiliation(s)
- Timo Volz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Sippel
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Johanna Richter
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alice Grizzel Willison
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
8
|
Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N, Aljarallah S, Bohlega S, Dahdaleh M, Almahdawi A, Khoury SJ, Koussa S, Slassi E, Daoudi S, Aref H, Mrabet S, Zeineddine M, Zakaria M, Inshasi J, Gouider R, Alroughani R. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord 2024; 83:105435. [PMID: 38245998 DOI: 10.1016/j.msard.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
With evolving diagnostic criteria and the advent of new oral and parenteral therapies for Multiple Sclerosis (MS), most current diagnostic and treatment algorithms need revision and updating. The diagnosis of MS relies on incorporating clinical and paraclinical findings to prove dissemination in space and time and exclude alternative diseases that can explain the findings at hand. The differential diagnostic workup should be guided by clinical and laboratory red flags to avoid unnecessary tests. Appropriate selection of MS therapies is critical to maximize patient benefit. The current guidelines review the current diagnostic criteria for MS and the scientific evidence supporting treatment of acute relapses, radiologically isolated syndrome, clinically isolated syndrome, relapsing remitting MS, progressive MS, pediatric cases and pregnant women. The purpose of these guidelines is to provide practical recommendations and algorithms for the diagnosis and treatment of MS based on current scientific evidence and clinical experience.
Collapse
Affiliation(s)
- B Yamout
- Neurology Institute and Multiple Sclerosis Center, Harley Street Medical Center, Abu Dhabi, United Arab Emirates.
| | - M Al-Jumah
- InterHealth hospital, Multiple Sclerosis Center, Riyadh, Saudi Arabia
| | - M A Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Y Almalik
- Division of Neurology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - J Al Khaburi
- Department of Neurology, The Royal Hospital, Sultanate of Oman
| | - N Shalaby
- Neurology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - S Bohlega
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - A Almahdawi
- Consultant Neurologist, Neurology Unit, Baghdad Teaching Hospital, Medical City Complex, Iraq
| | - S J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - S Koussa
- Multiple Sclerosis Center, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | - E Slassi
- Hôpital Cheikh Khalifa Ibn Zaid, Casablanca, Morocco
| | - S Daoudi
- Hospital Center Nedir Mohamed, Faculty of Medicine, University Mouloud Mammeri Tizi-Ouzou, Algeria
| | - H Aref
- Neurology Department, Ain Shams University, Cairo, Egypt
| | - S Mrabet
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - M Zeineddine
- Middle East and North Africa Committee for Treatment and Research in Multiple Sclerosis (MENACTRIMS), Beirut, Lebanon
| | | | - J Inshasi
- Department of Neurology, Rashid Hospital and Dubai Medical College, Dubai Health Authority, Dubai, United Arab Emirates
| | - R Gouider
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - R Alroughani
- Amiri Hospital, Arabian Gulf Street, Sharq, Kuwait
| |
Collapse
|
9
|
Gakis G, Angelopoulos I, Panagoulias I, Mouzaki A. Current knowledge on multiple sclerosis pathophysiology, disability progression assessment and treatment options, and the role of autologous hematopoietic stem cell transplantation. Autoimmun Rev 2024; 23:103480. [PMID: 38008300 DOI: 10.1016/j.autrev.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects nearly 2.8 million people each year. MS distinguishes three main types: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). RRMS is the most common type, with the majority of patients eventually progressing to SPMS, in which neurological development is constant, whereas PPMS is characterized by a progressive course from disease onset. New or additional insights into the role of effector and regulatory cells of the immune and CNS systems, Epstein-Barr virus (EBV) infection, and the microbiome in the pathophysiology of MS have emerged, which may lead to the development of more targeted therapies that can halt or reverse neurodegeneration. Depending on the type and severity of the disease, various disease-modifying therapies (DMTs) are currently used for RRMS/SPMS and PPMS. As a last resort, and especially in highly active RRMS that does not respond to DMTs, autologous hematopoietic stem cell transplantation (AHSCT) is performed and has shown good results in reducing neuroinflammation. Nevertheless, the question of its potential role in preventing disability progression remains open. The aim of this review is to provide a comprehensive update on MS pathophysiology, assessment of MS disability progression and current treatments, and to examine the potential role of AHSCT in preventing disability progression.
Collapse
Affiliation(s)
- Georgios Gakis
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Angelopoulos
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
10
|
Lin SQ, Wang K, Pan XH, Ruan GP. Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases. Curr Stem Cell Res Ther 2024; 19:1415-1428. [PMID: 38311916 DOI: 10.2174/011574888x271344231129053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024]
Abstract
Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
Collapse
Affiliation(s)
- Shu-Qian Lin
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Kai Wang
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| | - Guang-Ping Ruan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| |
Collapse
|
11
|
Bayas A, Berthele A, Blank N, Dreger P, Faissner S, Friese MA, Gerdes LA, Grauer OM, Häussler V, Heesen C, Janson D, Korporal-Kuhnke M, Kowarik M, Kröger N, Lünemann JD, Martin R, Meier U, Meuth S, Muraro P, Platten M, Schirmer L, Stürner KH, Stellmann JP, Scheid C, Bergh FT, Warnke C, Wildemann B, Ziemssen T. Autologous haematopoietic stem cell transplantation for multiple sclerosis: a position paper and registry outline. Ther Adv Neurol Disord 2023; 16:17562864231180730. [PMID: 37780055 PMCID: PMC10540601 DOI: 10.1177/17562864231180730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background While substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS), a high percentage of treated patients still show progression and persistent inflammatory activity. Autologous haematopoietic stem cell transplantation (AHSCT) aims at eliminating a pathogenic immune repertoire through intense short-term immunosuppression that enables subsequent regeneration of a new and healthy immune system to re-establish immune tolerance for a long period of time. A number of mostly open-label, uncontrolled studies conducted over the past 20 years collected about 4000 cases. They uniformly reported high efficacy of AHSCT in controlling MS inflammatory disease activity, more markedly beneficial in relapsing-remitting MS. Immunological studies provided evidence for qualitative immune resetting following AHSCT. These data and improved safety profiles of transplantation procedures spurred interest in using AHSCT as a treatment option for MS. Objective To develop expert consensus recommendations on AHSCT in Germany and outline a registry study project. Methods An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of virtual meetings. Results We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS based on the Swiss criteria. Current data indicate that patients who are most likely to benefit from AHSCT have relapsing-remitting MS and are young, ambulatory and have high disease activity. Treatment data with AHSCT will be collected within the German REgistry Cohort of autologous haematopoietic stem CeLl trAnsplantation In MS (RECLAIM). Conclusion Further clinical trials, including registry-based analyses, are urgently needed to better define the patient characteristics, efficacy and safety profile of AHSCT compared with other high-efficacy therapies and to optimally position it as a treatment option in different MS disease stages.
Collapse
Affiliation(s)
- Antonios Bayas
- Department of Neurology and Clinical Neurophysiology, Faculty of Medicine, University of Augsburg, Augsburg
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich, Munich
| | - Norbert Blank
- Rheumatology Section, Interdisciplinary Centre for Chronic Inflammatory Diseases, Heidelberg University Hospital, Heidelberg
| | - Peter Dreger
- Spokesman German Working Group for Haematopoietic Stem Cell Transplantation and Cellular Therapy e.V., Heidelberg University Hospital, Heidelberg
| | - Simon Faissner
- Department of Neurology, University Hospital of Ruhr-University Bochum, St. Josef-Hospital, Bochum
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS) and Department of Neurology, University Medical Center Hamburg-Eppendorf
| | - Lisa-Ann Gerdes
- Institut für Klinische Neuroimmunologie am Klinikum der Ludwig-Maximilians-Universität München, München
| | - Oliver Martin Grauer
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster
| | - Vivien Häussler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS) and Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS) and Department of Neurology University Medical Center Hamburg-Eppendorf
- Clinical and Rehabilitative MS Research, Institute for Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, D-20246 Hamburg, Germany
| | - Dietlinde Janson
- Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | | | - Markus Kowarik
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Kröger
| | - Nikolaus Kröger
- Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster
| | - Roland Martin
- Institute of Experimental Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Uwe Meier
- Chairman of the Professional Association of German Neurologists, Neurocentrum Grevenbroich, Grevenbroich
| | - Sven Meuth
- Medical Faculty, Department of Neurology, University Hospital Düsseldorf, Düsseldorf
| | - Paolo Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michael Platten
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg
| | | | - Jan Patrick Stellmann
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Université, Marseille
| | - Christof Scheid
- Clinic I for Internal Medicine, University Hospital Cologne, Cologne
| | | | - Clemens Warnke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic and Polyclinic of Neurology, Cologne
| | - Brigitte Wildemann
- AG Neuroimmunology, Neurological Clinic, Heidelberg University Hospital, Heidelberg
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus Dresden, Technische Universität Dresden
| |
Collapse
|
12
|
Yasuda T, Uchiyama T, Watanabe N, Ito N, Nakabayashi K, Mochizuki H, Onodera M. Peripheral immune system modulates Purkinje cell degeneration in Niemann-Pick disease type C1. Life Sci Alliance 2023; 6:e202201881. [PMID: 37369603 PMCID: PMC10300197 DOI: 10.26508/lsa.202201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a fatal lysosomal storage disorder characterized by progressive neuronal degeneration. Its key pathogenic events remain largely unknown. We have, herein, found that neonatal BM-derived cell transplantation can ameliorate Purkinje cell degeneration in NPC1 mice. We subsequently addressed the impact of the peripheral immune system on the neuropathogenesis observed in NPC1 mice. The depletion of mature lymphocytes promoted NPC1 phenotypes, thereby suggesting a neuroprotective effect of lymphocytes. Moreover, the peripheral infusion of CD4-positive cells (specifically, of regulatory T cells) from normal healthy donor ameliorated the cerebellar ataxic phenotype and enhanced the survival of Purkinje cells. Conversely, the depletion of regulatory T cells enhanced the onset of the neurological phenotype. On the other hand, circulating inflammatory monocytes were found to be involved in the progression of Purkinje cell degeneration, whereas the depletion of resident microglia had little effect. Our findings reveal a novel role of the adaptive and the innate immune systems in NPC1 neuropathology.
Collapse
Affiliation(s)
- Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Noriko Ito
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
13
|
Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44:499-517. [PMID: 36303065 DOI: 10.1007/s10072-022-06460-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The expansion of the availability of advanced imaging methods needs more time, expertise, and resources which is in contrast to the primary goal of the imaging techniques. To overcome most of these difficulties, artificial intelligence (AI) can be used. A number of studies used AI models for multiple sclerosis (MS) diagnosis and reported diverse results. Therefore, we aim to perform a comprehensive systematic review and meta-analysis study on the role of AI in the diagnosis of MS. METHODS We performed a systematic search using four databases including PubMed, Scopus, Web of Science, and IEEE. Studies that applied deep learning or AI to the diagnosis of MS based on any modalities were considered eligible in our study. The accuracy, sensitivity, specificity, precision, and area under curve (AUC) were pooled with a random-effects model and 95% confidence interval (CI). RESULTS After the screening, 41 articles with 5989 individuals met the inclusion criteria and were included in our qualitative and quantitative synthesis. Our analysis showed that the overall accuracy among studies was 94% (95%CI: 93%, 96%). The pooled sensitivity and specificity were 92% (95%CI: 90%, 95%) and 93% (95%CI: 90%, 96%), respectively. Furthermore, our analysis showed 92% precision in MS diagnosis for AI studies (95%CI: 88%, 97%). Also, the overall pooled AUC was 93% (95%CI: 89%, 96%). CONCLUSION Overall, AI models can further improve our diagnostic practice in MS patients. Our results indicate that the use of AI can aid the clinicians in accurate diagnosis of MS and improve current diagnostic approaches as most of the parameters including accuracy, sensitivity, specificity, precision, and AUC were considerably high, especially when using MRI data.
Collapse
|
14
|
The Place of Immune Reconstitution Therapy in the Management of Relapsing Multiple Sclerosis in France: An Expert Consensus. Neurol Ther 2022; 12:351-369. [PMID: 36564664 PMCID: PMC10043116 DOI: 10.1007/s40120-022-00430-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
The treatment strategy in relapsing multiple sclerosis (RMS) is a complex decision requiring individualization of treatment sequences to maximize clinical outcomes. Current local and international guidelines do not provide specific recommendation on the use of immune reconstitution therapy (IRT) as alternative to continuous immunosuppression in the management of RMS. The objective of the program was to provide consensus-based expert opinion on the optimal use of IRT in the management of RMS. A Delphi method was performed from May 2022 to July 2022. Nineteen clinical assertions were developed by a scientific committee and sent to 14 French clinical experts in MS alongside published literature. Two consecutive reproducible anonymous votes were conducted. Consensus on recommendations was achieved when more than 75% of the respondents agreed or disagreed with the clinical assertions. After the second round, consensus was achieved amongst 16 out of 19 propositions: 13 clinical assertions had a 100% consensus, 3 clinical assertions a consensus above 75% and 3 without consensus. Expert-agreed consensus is provided on topics related to the benefit of the early use of IRT from immunological and clinical perspectives, profiles of patients who may benefit most from the IRT strategy (e.g. patients with family planning, patient preference and lifestyle requirements). These French expert consensuses provide up-to-date relevant guidance on the use of IRT in clinical practice. The current program reflects status of knowledge in 2022 and should be updated in timely manner when further clinical data in IRT become available.
Collapse
|
15
|
Seasonal and monthly variation in multiple sclerosis relapses: a systematic review and meta-analysis. Acta Neurol Belg 2022; 122:1447-1456. [PMID: 36171477 DOI: 10.1007/s13760-022-02103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) relapses are episodes of transient disease exacerbation. There are contradictory findings regarding seasonal variation in MS relapses. In this systematic review and meta-analysis, we aimed to investigate the seasonal and monthly variation in relapse rates among patients with MS. METHODS We systematically queried PubMed, Scopus, and Web of Science for published papers until February 30, 2022. RESULTS A total of 24 studies were included in this systematic review and meta-analysis with a total of 29,106 patients with MS. We found that the relapse rate was significantly lower in fall compared to the average relapse rate in other seasons with a risk ratio (RR) of 0.97 (95% CI 0.95-0.98). Furthermore, patients with MS experienced a higher number of relapses in April (RR: 1.06, 95% CI 1.01-1.11) and March (RR: 1.08, 95% CI 1.00-1.16) compared to other months. Also, the risk of relapse was lower in August (RR: 0.92, 95% CI.85-0.98), September (RR: 0.97, 95% CI.94-0.99), October (RR: 0.92, 95% CI.89-0.96), and November (RR: 0.93, 95% CI.89-0.97). CONCLUSION Our systematic review and meta-analysis confirm the temporal fluctuations in the relapse of MS through a comprehensive review of the existing literature, with a lower relapse rate during late summer and fall and a higher relapse rate during early spring.
Collapse
|