1
|
Zhang T, Zhai J, Cheng L, Jiang K, Wang D, Shi H, Wang B, Chen X, Dong X, Zhou L. Acupuncture effects of post-stroke thalamic pain: a systematic review and meta-analysis of randomized controlled trials. Front Neurol 2025; 16:1528956. [PMID: 40371081 PMCID: PMC12074919 DOI: 10.3389/fneur.2025.1528956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Background Post-stroke thalamic pain (PS-TP), a common form of central pain, is characterized by hyperalgesia and abnormal sensations in the contralateral affected area. Acupuncture treatment has shown increasing promise in treating PS-TP in recent years. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of acupuncture treatment for PS-TP. Methods According to the established search strategy, randomized controlled trials (RCTs) of acupuncture therapy for PS-TP were retrieved from eight Chinese and English databases as well as two clinical trial registration platforms, up to February 2024. Outcome measures included the total efficacy rate, visual analogue scale (VAS), present pain intensity score (PPI), pain rating index (PRI), β-endorphin (β-EP), substance P (SP) and adverse reactions. Sensitivity analysis and subgroup analysis were conducted to identify the sources of heterogeneity. We evaluated the evidence quality of outcomes via the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) rating system and performed trial sequential analyses using TSA software. Results The final inclusion comprised 12 articles, which involved 953 patients. Meta-analysis results indicated that acupuncture treatment for PS-TP was more effective than conventional medical treatment in reducing VAS scores [MD = -1.11, 95% CI (-1.33, -0.88), p = 0.002], PPI scores [MD = -0.65, 95% CI (-1.13, -0.16), p = 0.009], and PRI scores [MD = -1.02, 95% CI (-1.41, -0.63), p < 0.00001]. Additionally, acupuncture treatment for PS-TP was superior to the conventional medical treatment in increasing plasma β-EP levels [MD = 8.83, 95% CI (5.42, 12.25), p < 0.00001], and reducing SP levels [MD = -4.75, 95% CI (-7.11, -2.40), p < 0.0001]. Regarding the total efficacy rate, acupuncture treatment was superior to the conventional medical treatment in treating PS-TP [RR = 1.24, 95% CI (1.17, 1.31), p < 0.00001]. The incidence of adverse events was lower in acupuncture treatment than in conventional medical treatment [RR = 0.43, 95% CI (0.14, 1.32), p = 0.03]. The GRADE assessment indicated that the quality of evidence for all outcome measures ranged from moderate to very low. Trial sequential analysis (TSA) results provided compelling evidence for the efficacy of acupuncture in treating PS-TP. Conclusion Acupuncture treatment emerges as a potentially efficacious and safe treatment option for PS-TP. In the future, more large-sample, high-quality RCTs are needed to provide primarily high-level evidence in evidence-based medicine regarding the safety and sustained effects of acupuncture treatment for PS-TP. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024498698, identifier CRD42024498698.
Collapse
Affiliation(s)
- Tianwei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Junying Zhai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ling Cheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaixin Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Dayang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huawei Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinglu Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Lyubomudrov M, Babkina A, Tsokolaeva Z, Yadgarov M, Shigeev S, Sundukov D, Golubev A. Morphology of Cortical Microglia in the Hyperacute Phase of Subarachnoid Hemorrhage. BIOLOGY 2024; 13:917. [PMID: 39596872 PMCID: PMC11591589 DOI: 10.3390/biology13110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Hemorrhagic stroke is the deadliest type of stroke. Cellular and molecular biomarkers are important for understanding the pathophysiology of stroke. Microglia are among the most promising biological markers. However, the morphological and physiological characteristics of microglia, as well as the structural and functional aspects of their interactions with neurons and other cells, are largely unknown. Due to the large number of different morphological phenotypes and very limited information on microglial changes in subarachnoid hemorrhage (SAH), we performed this study aimed at identifying the features of the distribution of various microglial phenotypes in the layers of the cerebral cortex in the hyperacute phase of non-traumatic SAH. We studied the distribution of various microglial phenotypes in the layers of the cerebral cortex of SAH non-survivors with a control group (coronary heart disease and sudden cardiac death were the underlying causes of death). An immunohistochemical study using antibodies to iba-1 (a marker of microglia) revealed changes in the morphological phenotypes of microglia in the cerebral cortex after subarachnoid hemorrhage. Significant differences between the groups indicate a rapid microglial response to injury. The findings indicate that there are quantitative and phenotypic changes in microglia in the cerebral cortex during early SAH in the human cortex.
Collapse
Affiliation(s)
- Maksim Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Anastasiya Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Zoya Tsokolaeva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Mikhail Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Sergey Shigeev
- Bureau of Forensic Medical Examination of the Department of Healthcare of the City of Moscow, Moscow 115516, Russia
| | - Dmitriy Sundukov
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| | - Arkady Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| |
Collapse
|
3
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
4
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024; 16:AD.2024.0214-1. [PMID: 38421829 PMCID: PMC11745440 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Liao Y, Hu J, Guo C, Wen A, Wen L, Hou Q, Weng Y, Wang J, Ding Y, Yang J. Acteoside alleviates blood-brain barrier damage induced by ischemic stroke through inhibiting microglia HMGB1/TLR4/NLRP3 signaling. Biochem Pharmacol 2024; 220:115968. [PMID: 38104671 DOI: 10.1016/j.bcp.2023.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ischemic stroke (IS) can cause severe harm, inducing oxidative stress, inflammation, and pyroptotic death. IS treatment efficacy remains limited, and microglia are important regulators of IS-related blood-brain barrier (BBB) damage. It is thus vital that new therapeutic agents capable of targeting microglia be identified to treat IS-related damage to the BBB. Acteoside (ACT), which is a compound derived from Cistanche tubulosa (Schenk) Wight., offers promising bioactivity, but its ability to protect against central nervous system injury remains to be documented. To clarify the protective benefits and mechanisms through which ACT can protect against damage to the BBB, a rat middle cerebral artery occlusion (MCAO) model system was herein employed. These in vivo analyses demonstrated that ACT was able to significantly reduce cerebral infarct size while improving their neurological scores and altering neurotrophic and inflammatory factor release. RNA sequencing and molecular docking studies highlighted the ability of ACT to exert its protective benefits via the HMGB1/TLR4/NLRP3 axis. Western immunoblotting and immunofluorescent staining for tight junction proteins additionally confirmed the ability of ACT to preserve BBB integrity. The underlying mechanisms were then explored with an oxygen-glucose deprivation (OGD) model in vitro with BV2 cells. This strategy thus confirmed that the ability of ACT to suppress microglial inflammatory and pyroptotic activity was HMGB1/TLR4/NLRP3 pathway-dependent. These data thus offer novel evidence that ACT can protect against IS-related damage to the BBB through the abrogation of inflammatory and pyroptotic activity, underscoring its promise as a novel lead compound for the therapeutic treatment of IS.
Collapse
Affiliation(s)
- Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Qiang Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
7
|
Dishman D, Lal T, Silos C, Chen L, Jiang X, Beauchamp J, Aggarwal S, Green C, Savitz SI. A retrospective examination of pain in acute stroke at hospital discharge. J Stroke Cerebrovasc Dis 2023; 32:107370. [PMID: 37832269 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES Pain is an overlooked sequela of stroke. Persistent pain after stroke is an underrecognized experience and significantly impacts survivors' function, ability to participate in rehabilitation, and quality of life. The aim of this retrospective, observational study is to examine the incidence of pain at the acute hospitalization period immediately after stroke, to identify the characteristics of those reporting pain at discharge, and to compare pain reporting between stroke and non-stroke hospital controls. MATERIALS AND METHODS Using discharge diagnosis, this retrospective review examined self- reports of pain during acute hospitalization for stroke compared to those with COPD (control group) admitted during the same time in the same facilities. Variables of interest included age, gender, body mass index (BMI), length of stay, pain assessment score (numeric rating scale [NRS], behavior pain scale [BPS], and medication administration record pain score total [MAR]), smoking history, prevalence of hypertension and race. 821 subjects were included from a total of three campuses from one large hospital system. 772 subjects were included in the comparative analysis with COPD patients from the same facilities during the same time. RESULTS 43% of patients diagnosed with stroke reported pain at discharge. For stroke survivors reporting pain at discharge, the average BMI was higher (p=0.009), average arrival NIHSS was higher (p=0.044), and mean hospital length of stay was longer (p<0.001). CONCLUSIONS The evidence demonstrated in this study highlights the critical need for the implementation of targeted objective pain assessment and effective pain interventions for stroke survivors beginning at initial hospitalization.
Collapse
Affiliation(s)
- Deniz Dishman
- Institute for Stroke and Cerebrovascular Disease and Cizik School of Nursing, University of Texas Health Science Center at Houston, United States; Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, United States.
| | - Tia Lal
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, United States
| | - Christin Silos
- Baylor College of Medicine, Houston, Texas, United States
| | - Luyao Chen
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, United States
| | - Xiaoqian Jiang
- Institute for Stroke and Cerebrovascular Disease and School of Biomedical Informatics, University of Texas Health Science Center at Houston, United States
| | - Jennifer Beauchamp
- Institute for Stroke and Cerebrovascular Disease and Cizik School of Nursing, University of Texas Health Science Center at Houston, United States
| | - Seema Aggarwal
- Institute for Stroke and Cerebrovascular Disease and Cizik School of Nursing, University of Texas Health Science Center at Houston, United States
| | - Charles Green
- Institute for Stroke and Cerebrovascular Disease and McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Sean I Savitz
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, United States
| |
Collapse
|
8
|
Mohanan AT, Nithya S, Nomier Y, Hassan DA, Jali AM, Qadri M, Machanchery S. Stroke-Induced Central Pain: Overview of the Mechanisms, Management, and Emerging Targets of Central Post-Stroke Pain. Pharmaceuticals (Basel) 2023; 16:1103. [PMID: 37631018 PMCID: PMC10459894 DOI: 10.3390/ph16081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of stroke plays the foremost role in the genesis of central neuropathic pain. Central post-stroke pain (CPSP) is a central pain arising from a vascular lesion in the central nervous system that elicits somatosensory deficits, often contralateral to stroke lesions. It is expressed as continuous or intermittent pain accompanied by sensory abnormalities like dysesthesia and allodynia. CPSP remains de-emphasized due to the variation in onset and diversity in symptoms, besides the difficulty of distinguishing it from other post-stroke pains, often referred to as a diagnosis of exclusion. Spinothalamic dysfunction, disinhibition of the medial thalamus, and neuronal hyperexcitability combined with deafferentation in thalamocortical regions are the mechanisms underlying central pain, which play a significant role in the pathogenesis of CPSP. The treatment regimen for CPSP seems to be perplexed in nature; however, based on available studies, amitriptyline and lamotrigine are denoted as first-line medications and non-pharmacological choices may be accounted for cases intractable to pharmacotherapy. This review attempts to provide an overview of the mechanisms, existing management approaches, and emerging targets of CPSP. A profound understanding of CPSP aids in optimizing the quality of life among stroke sufferers and facilitates further research to develop newer therapeutic agents for managing CPSP.
Collapse
Affiliation(s)
- Anugeetha Thacheril Mohanan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Sermugapandian Nithya
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, Tamilnadu, India
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Dalin A. Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Shamna Machanchery
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Bu F, Li Y, Lan S, Yang T, He B, Dong P, Shen F, Cai H, Lu Y, Fei Y, Xu L, Qin X. Blocking Pannexin-1 Channels Alleviates Thalamic Hemorrhage-Induced Pain and Inflammatory Depolarization of Microglia in Mice. ACS Chem Neurosci 2023. [PMID: 37377340 DOI: 10.1021/acschemneuro.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Central post-stroke pain (CPSP) is a neuropathic pain syndrome that frequently occurs following cerebral stroke. The pathogenesis of CPSP is mainly due to thalamic injury caused by ischemia and hemorrhage. However, its underlying mechanism is far from clear. In the present study, a thalamic hemorrhage (TH) model was established in young male mice by microinjection of 0.075 U of type IV collagenase into the unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus. We found that TH led to microglial pannexin (Panx)-1, a large-pore ion channel, opening within the thalamus accompanied with thalamic tissue injury, pain sensitivities, and neurological deficit, which were significantly prevented by either intraperitoneal injection of the Panx1 blocker carbenoxolone or intracerebroventricular perfusion of the inhibitory mimetic peptide 10Panx. However, inhibition of Panx1 has no additive effect on pain sensitivities upon pharmacological depletion of microglia. Mechanistically, we found that carbenoxolone alleviated TH-induced proinflammatory factors transcription, neuronal apoptosis, and neurite disassembly within the thalamus. In summary, we conclude that blocking of microglial Panx1 channels alleviates CPSP and neurological deficit through, at least in part, reducing neural damage mediated by the inflammatory response of thalamic microglia after TH. Targeting Panx1 might be a potential strategy in the treatment of CPSP.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yuerong Li
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shiming Lan
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Taiqin Yang
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Baokun He
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Peng Dong
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Fengyan Shen
- Department of Anesthesiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Haobin Cai
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yunwei Lu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yong Fei
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiude Qin
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| |
Collapse
|
10
|
Liao YC, Wang JW, Guo C, Bai M, Ran Z, Wen LM, Ju BW, Ding Y, Hu JP, Yang JH. Cistanche tubulosa alleviates ischemic stroke-induced blood-brain barrier damage by modulating microglia-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116269. [PMID: 36863639 DOI: 10.1016/j.jep.2023.116269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) has both high morbidity and mortality. Previous research conducted by our group demonstrated that the bioactive ingredients of the traditional medicinal and edible plant Cistanche tubulosa (Schenk) Wight (CT) have various pharmacological effects in treating nervous system diseases. However, the effect of CT on the blood-brain barrier (BBB) after IS are still unknown. AIM OF THE STUDY This study aimed to identify CT's curative effect on IS and explore its underlying mechanism. MATERIALS AND METHODS IS injury was established in a rat model of middle cerebral artery occlusion (MCAO). Gavage administration of CT at dosages of 50, 100, and 200 mg/kg/day was carried out for seven consecutive days. Network pharmacology was used for predicting the pathways and potential targets of CT against IS, and subsequent studies confirmed the relevant targets. RESULTS According to the results, both neurological dysfunction and BBB disruption were exacerbated in the MCAO group. Moreover, CT improved BBB integrity and neurological function and protected against cerebral ischemia injury. Network pharmacology revealed that IS might involve neuroinflammation mediated by microglia. Extensive follow-up studies verified that MCAO caused IS by stimulating the production of inflammatory factors and microglial infiltration. CT was found to influence neuroinflammation via microglial M1-M2 polarization. CONCLUSION These findings suggested that CT may regulate microglia-mediated neuroinflammation by reducing MCAO-induced IS. The results provide theoretical and experimental evidence for the efficacy of CT therapy and novel concepts for the prevention and treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Yu-Cheng Liao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China; Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Ran
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China
| | - Li-Mei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China
| | - Bo-Wei Ju
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China; Department of Pharmacy, The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jun-Ping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
11
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
12
|
Krishnamoorthy S, Paulraj S, Selvaraj NP, Ragupathy B, Arumugam S. A novel approach for neural networks based diagnosis and grading of stroke in tumor-affected brain MRIs. NETWORK (BRISTOL, ENGLAND) 2023; 34:190-220. [PMID: 37352128 DOI: 10.1080/0954898x.2023.2225601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Recognition and diagnosis of stroke from magnetic resonance Image (MRIs) are significant for medical procedures in therapeutic standards. The primary goal of this scheme is the discovery of stroke in tumour locale in brain tissues influenced image. The probability of stroke is categorized on brain tumour influenced images into mild, moderate, or serious cases. The mild and moderate phases of stroke are recognized as "Ahead of schedule" findings and serious cases are distinguished as "Advance" determination. The proposed Glioblastoma brain tumour recognition strategy used the Multifaceted Brain Tumour Image Segmentation test open-access dataset for evaluating the presentation. The brain images are classified utilizing the Deep Neural Networks classification algorithm as normal and abnormal images. The tumour region is segmented from the identified set of abnormal images using the normalized graph cut algorithm. The stroke likelihood is identified using the Deep Neural Networks by analysing the proximity of tumour section in brain matters. The proposed stroke analysis framework accurately groups 10 images as "Right on time" stroke probability images and accomplishes 90% order rate. The proposed stroke prediction framework effectively characterizes images as "Advance" stroke probability images and accomplishes 90% characterization rate.
Collapse
Affiliation(s)
| | - Sivakumar Paulraj
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Nagendra Prabhu Selvaraj
- Department of Computational Intelligence, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Balakumaresan Ragupathy
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
| | - Selvapandian Arumugam
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
| |
Collapse
|
13
|
Ma Y, Luo J, Wang XQ. The effect and mechanism of exercise for post-stroke pain. Front Mol Neurosci 2022; 15:1074205. [PMID: 36533131 PMCID: PMC9755671 DOI: 10.3389/fnmol.2022.1074205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
One of the common negative effects of a stroke that seriously lowers patients' quality of life is post-stroke pain (PSP). Thus, exercise in PSP management has become a hot research topic. The main advantages of exercise therapy are affordability and ease of acceptance by patients compared to other treatment methods. Therefore, this article reviews the effectiveness and possible mechanisms of exercise interventions for PSP. Exercise training for patients with PSP not only improves physical function but also effectively reduces pain intensity and attenuates the behavioral response to pain. In addition, exercise therapy can improve brain function and modulate levels of pro-inflammatory and neurotrophic factors to exert specific analgesic effects. Potential mechanisms for exercise intervention include modulation of synaptic plasticity in the anterior cingulate gyrus, modulation of endogenous opioids in vivo, reversal of brain-derived neurotrophic factor overexpression, inhibition of purinergic receptor (P2X4R, P2X7R) expression, and inhibition of microglia activation. However, current research on exercise for PSP remains limited, and the sustainable benefits of exercise interventions for PSP need to be further investigated.
Collapse
Affiliation(s)
- Yue Ma
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
14
|
Chen W, Zhang Y, Zhai X, Xie L, Guo Y, Chen C, Li Y, Wang F, Zhu Z, Zheng L, Wan J, Li P. Microglial phagocytosis and regulatory mechanisms after stroke. J Cereb Blood Flow Metab 2022; 42:1579-1596. [PMID: 35491825 PMCID: PMC9441720 DOI: 10.1177/0271678x221098841] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke, including ischemic stroke and hemorrhagic stroke can cause massive neuronal death and disruption of brain structure, which is followed by secondary inflammatory injury initiated by pro-inflammatory molecules and cellular debris. Phagocytic clearance of cellular debris by microglia, the brain's scavenger cells, is pivotal for neuroinflammation resolution and neurorestoration. However, microglia can also exacerbate neuronal loss by phagocytosing stressed-but-viable neurons in the penumbra, thereby expanding the injury area and hindering neurofunctional recovery. Microglia constantly patrol the central nervous system using their processes to scour the cellular environment and start or cease the phagocytosis progress depending on the "eat me" or "don't eat me'' signals on cellular surface. An optimal immune response requires a delicate balance between different phenotypic states to regulate neuro-inflammation and facilitate reconstruction after stroke. Here, we examine the literature and discuss the molecular mechanisms and cellular pathways regulating microglial phagocytosis, their resulting effects in brain injury and neural regeneration, as well as the potential therapeutic targets that might modulate microglial phagocytic activity to improve neurological function after stroke.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fajun Wang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Rivel M, Achiron A, Dolev M, Stern Y, Zeilig G, Defrin R. Unique features of central neuropathic pain in multiple sclerosis: Results of a cluster analysis. Eur J Pain 2022; 26:1107-1122. [PMID: 35263811 PMCID: PMC9313873 DOI: 10.1002/ejp.1934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Background Central neuropathic pain (CNP) is an excruciating condition, prevalent in up to a third of patients with multiple sclerosis (MS). Identifying CNP among MS patients is particularly challenging considering the ample comorbid chronic pain conditions and sensory disturbances entailed by the disease. The aim was to identify sensory features unique to CNP beyond those of chronic pain and MS. Methods Participants were 112 MS patients: 44 with a diagnosis of CNP, 28 with a diagnosis of chronic musculoskeletal pain (MSP), and 40 pain free. Participants underwent testing of thermal and mechanical thresholds, thermal grill illusion (TGI), pain adaptation (PA), and offset analgesia (OA), and chronic pain was characterized. A two‐step cluster analysis was performed, and the association between the cluster membership and the clinical group membership (CNP, MSP, pain free) was evaluated. Results The CNP and MSP groups were similar in most of the chronic pain variables (e.g., severity, location and quality) and MS‐related variables (e.g., type, severity and medication intake). The three created clusters had unique sensory features: (1) ‘Hyposensitivity’ (increased thermal and touch thresholds) characterized the CNP group; (2) ‘Poor inhibition and hyperalgesia’ (worst PA and OA and decreased TGI threshold) characterized the MSP group; and (3) ‘Efficient inhibition’ (best PA and OA, smallest sensory loss) characterized the pain‐free group. Conclusions The unique sensory features of CNP and MSP provide insight into their pathophysiology, and evaluating them may increase the ability to provide individually based interventions. Efficient inhibition may protect MS patients from chronic pain. Significance Cluster analysis among patients with multiple sclerosis (MS) revealed that while central neuropathic pain is associated with thermal and mechanical hypoesthesia, musculoskeletal pain is involved with reduced pain inhibition and hyperalgesia; sensory profiles that provide insights into the mechanisms of these conditions and may promote an individually based pain management.
Collapse
Affiliation(s)
- Michal Rivel
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University.,Sagol School of Neuroscience, Tel Aviv University
| | - Anat Achiron
- Sagol School of Neuroscience, Tel Aviv University.,Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer.,Sackler Faculty of Medicine, Tel Aviv University
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer
| | - Yael Stern
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer
| | - Gabi Zeilig
- Sackler Faculty of Medicine, Tel Aviv University.,Department of Neurological Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
| | - Ruth Defrin
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University.,Sagol School of Neuroscience, Tel Aviv University
| |
Collapse
|