1
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
2
|
Al-Najjar AH, Ayob AR, Awad AS. Role of Lactoferrin in Treatment of Bile Duct Ligation-Induced Hepatic Fibrosis in Rats: Impact on Inflammation and TGF-β1/Smad2/α SMA Signaling Pathway. J Clin Exp Hepatol 2023; 13:428-436. [PMID: 37250877 PMCID: PMC10213847 DOI: 10.1016/j.jceh.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2022] [Indexed: 05/31/2023] Open
Abstract
Background Hepatic fibrosis is a major health issue that might lead to hepatic cirrhosis and cancer. One of its main causes is cholestasis, which has been stimulated by bile duct ligation (BDL) to block the bile flow from the liver. As for the treatment, lactoferrin (LF), the iron-binding glycoprotein, has been evaluated in various studies for the treatment of infections, inflammation, and cancer. The current study aims to investigate the curative effects of LF on BDL-induced hepatic fibrosis in rats. Methods Rats were randomly allocated into 4 groups: (1) Control sham, (2) BDL: that have been subjected to a surgery of BDL, (3) BDL + LF: 14 days later after surgery; they have been subjected to LF treatment (300 mg/kg/day, po) for two weeks, and (4) LF group has been administered (300 mg/kg/day, po) for two weeks. Results BDL elevated inflammatory markers (tumor necrosis factor-alpha and interleukin -1beta (IL-1β) by 635% and 250% (P ≤ 0.05), respectively, as sham group), beside it decreased the anti-inflammatory cytokine, interleukin- 10 (IL-10) by 47.7% (P ≤ 0.05) as sham group, causing inflammation, and fibrosis of the liver by the up-regulation of transforming growth factor-beta 1 (TGF-β1)/Smad2/α-smooth muscle actin (SMA) signaling pathway. LF treatment ameliorated these effects through its anti-inflammatory action (it significantly decreased tumor necrosis factor-alpha and IL-1β by 166% and 159% (P ≤ 0.05), respectively, as sham group, while increased IL-10 by 86.8% (P ≤ 0.05), as sham group) and anti-fibrotic effect by the down-regulation of TGF-β1/Smad2/α-SMA signaling pathway. These results were confirmed by histopathological examination. Conclusion lactoferrin shows promising results for the treatment of hepatic fibrosis via attenuating the TGF-β1/Smad2/α-SMA pathway and through its properties.
Collapse
Affiliation(s)
- Aya H. Al-Najjar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya R. Ayob
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, Giza, Egypt
| | - Azza S. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Abdelsalam MM, El-Mahdy N, Abou-Saif S. Direct-acting antivirals sofosbuvir and daclatasvir attenuate carbon tetrachloride-induced liver fibrosis in mice. LIVER RESEARCH 2023; 7:71-81. [PMID: 39959700 PMCID: PMC11791913 DOI: 10.1016/j.livres.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/14/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023]
Abstract
Background and aim Advanced liver fibrosis is a major risk for developing hepatocellular carcinoma (HCC) in chronic hepatitis C virus (HCV) patients. Direct-acting antivirals (DAAs) which are used for treating HCV infection, produce more than 90% cure rate but do not seem to diminish the rate of occurrence or recurrence of HCC. This study aimed to investigate the effect of DAAs sofosbuvir (SOF) and daclatasvir (DAC) on carbon tetrachloride (CCl4)-induced fibrotic changes in mice. Methods Eighty adult male Swiss albino mice were randomly allocated into 8 groups (10 mice/group): normal control group, SOF group (receiving SOF 80 mg/kg body weight (BW), oral gavage, daily), DAC group (receiving DAC 30 mg/kg BW, oral gavage, daily), SOF + DAC group (receiving a combination of both, daily), CCl4 model group (receiving CCl4 2 mL/kg BW, intraperitoneal twice weekly) and three CCl4-intoxicated groups receiving either SOF or DAC or their combination. All CCl4 groups received CCl4 for 12 weeks followed by DAAs for another 12 weeks. Results CCl4-induced a significant elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and produced histopathological evidence of fibrosis and liver degeneration along with a significant increase (P ≤ 0.001) of the proliferation markers (proliferating cell nuclear antigen (PCNA) and Ki-67), hepatic stellate cells (HSCs) activation markers (alpha-smooth muscle actin (α-SMA) and glial fibrillary acidic protein (GFAP)), fibrosis marker (matrix metalloproteinase-9 (MMP-9)) and pro-inflammatory cytokine (tumor necrosis factor-alpha (TNF-α)). CCl4-intoxicated mice treated with SOF, DAC, or their combination revealed a significant amelioration (P ≤ 0.001) of CCl4-induced elevation of liver enzymes, fibrotic changes, and liver degeneration along with a significant attenuation (P ≤ 0.001) of CCl4-induced upregulation of all tested markers. The effects of SOF, DAC, and their combination on liver enzymes were comparable while the effect of SOF + DAC combination on mitigating CCl4-induced upregulation of the proliferation and HSCs activation markers was significantly stronger than either SOF or DAC alone. As for MMP-9 and TNF-α, the effects of DAC and SOF + DAC combination were comparable and both were more significant than that of SOF alone. Conclusions SOF and DAC may possess an antifibrotic effect that is independent of their role as antiviral agents against CCl4-induced liver injury. This might exclude the role of DAAs in early occurrence or accelerated recurrence of HCC through the progression of the HCV patients' pre-existing fibrosis. However, HCC patients treated with DAAs should be closely monitored with continuous HCC surveillance during and post-therapy.
Collapse
Affiliation(s)
- Mayadah M. Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nageh El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sabry Abou-Saif
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Effect of silymarin on blood coagulation profile and osmotic fragility in carbon tetrachloride induced hepatotoxicity in male Wistar rats. Toxicol Rep 2022; 9:1325-1330. [DOI: 10.1016/j.toxrep.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
|
5
|
Shin MR, Lee JA, Kim M, Lee S, Oh M, Moon J, Nam JW, Choi H, Mun YJ, Roh SS. Gardeniae Fructus Attenuates Thioacetamide-Induced Liver Fibrosis in Mice via Both AMPK/SIRT1/NF-κB Pathway and Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10111837. [PMID: 34829709 PMCID: PMC8614944 DOI: 10.3390/antiox10111837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Liver fibrosis, which means a sort of the excessive accumulation of extracellular matrices (ECMs) components through the liver tissue, is considered as tissue repair or wound-healing status. This pathological stage potentially leads to cirrhosis, if not controlled, it progressively results in hepatocellular carcinoma. Herein, we investigated the pharmacological properties and underlying mechanisms of Gardeniae Fructus (GF) against thioacetamide (TAA)-induced liver fibrosis of mice model. GF not only attenuated hepatic tissue oxidation but also improved hepatic inflammation. We further confirmed that GF led to ameliorating liver fibrosis by ECMs degradations. Regarding the possible underlying mechanism of GF, we observed GF regulated epigenetic regulator, Sirtuin 1 (SIRT1), in TAA-injected liver tissue. These alterations were well supported by SIRT1 related signaling pathways through regulations of its downstream proteins including, AMP-activated protein kinase (AMPK), p47phox, NADPH oxidase 2, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase-1, respectively. To validate the possible mechanism of GF, we used HepG2 cells with hydrogen peroxide treated oxidative stress and chronic exposure conditions via deteriorations of cellular SIRT1. Moreover, GF remarkably attenuated ECMs accumulations in transforming growth factor–β1-induced LX-2 cells relying on the SIRT1 existence. Taken together, GF attenuated liver fibrosis through AMPK/SIRT1 pathway as well as Nrf2 signaling cascades. Therefore, GF could be a clinical remedy for liver fibrosis patients in the future.
Collapse
Affiliation(s)
- Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
| | - Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
| | - Minju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
| | - Sehui Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
| | - Minhyuck Oh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
| | - Jimin Moon
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (J.M.); (J.-W.N.); (H.C.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (J.M.); (J.-W.N.); (H.C.)
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (J.M.); (J.-W.N.); (H.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Yeun-Ja Mun
- Department of Anatomy, School of Korean Medicine, Wonkwang University, Iksan 54538, Korea;
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea; (M.-R.S.); (J.A.L.); (M.K.); (S.L.); (M.O.)
- Correspondence: ; Tel.: +82-53-770-2258
| |
Collapse
|
6
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
7
|
Abd Elmaaboud M, Khattab H, Shalaby S. Hepatoprotective effect of linagliptin against liver fibrosis induced by carbon tetrachloride in mice. Can J Physiol Pharmacol 2020; 99:294-302. [PMID: 32726558 DOI: 10.1139/cjpp-2020-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current study aimed to investigate linagliptin for its potential role in the prevention of liver fibrosis progression. Balb-C mice were randomly allocated into five groups (10 each): (i) control; (ii) mice were injected intraperitoneally with 50 μL carbon tetrachloride (CCl4) in corn oil in a dose of 0.6 μL/g three times per week for four weeks; (iii) linagliptin was administered orally in a daily dose of 10 mg/kg simultaneously with CCl4; (iv) silymarin was administered orally in a daily dose of 200 mg/kg concomitantly with CCl4; and (v) only linagliptin was administered. Hepatic injury was manifested in the CCl4 group by elevation of biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)), and hepatic fibrosis was evident histopathologically by increased METAVIR score and immunostaining expression of alpha-smooth muscle actin (α-SMA), as well as increased liver tissue oxidative stress parameters, transforming growth factor-β1 (TGF-β1), and mammalian target of rapamycin (mTOR). Linagliptin was able to stop the progression of liver fibrosis, evident histopathologically with reduced METAVIR score and α-SMA expression. The possible mechanism may be via suppression of oxidative stress, TGF-β1, and mTOR, which was associated with improvement of serum biochemical parameters ALT and AST. In conclusion, linagliptin might help to protect the liver against persistent injury-related consequences.
Collapse
Affiliation(s)
- Maaly Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Haidy Khattab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shahinaz Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
9
|
Kim SY, Kim KH, Schilling JM, Leem J, Dhanani M, Head BP, Roth DM, Zemljic-Harpf AE, Patel HH. Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G531-G541. [PMID: 31961720 PMCID: PMC7099497 DOI: 10.1152/ajpgi.00346.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cirrhotic cardiomyopathy is a clinical syndrome in patients with liver cirrhosis characterized by blunted cardiac contractile responses to stress and/or heart rate-corrected QT (QTc) interval prolongation. Caveolin-3 (Cav-3) plays a critical role in cardiac protection and is an emerging therapeutic target for heart disease. We investigated the protective role of cardiac-specific overexpression (OE) of Cav-3 in cirrhotic cardiomyopathy. Biliary fibrosis was induced in male Cav-3 OE mice and transgene negative (TGneg) littermates by feeding a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; 0.1%) for 3 wk. Liver pathology and blood chemistries were assessed, and stress echocardiography, telemetry, and isolated heart perfusion studies to assess adrenergic responsiveness were performed. Cav-3 OE mice showed a similar degree of hyperdynamic contractility, pulmonary hypertension, and QTc interval prolongation as TGneg mice after 3 wk of DDC diet. Blunted systolic responses were shown in both DDC-fed Cav-3 OE and TGneg hearts after in vivo isoproterenol challenge. However, QTc interval prolongation after in vivo isoproterenol challenge was significantly less in DDC-fed Cav-3 OE hearts compared with DDC-fed TGneg hearts. In ex vivo perfused hearts, where circulatory factors are absent, isoproterenol challenge showed hearts from DDC-fed Cav-3 OE mice had better cardiac contractility and relaxation compared with DDC-fed TGneg hearts. Although Cav-3 OE in the heart did not prevent cardiac alterations in DDC-induced biliary fibrosis, cardiac expression of Cav-3 reduced QTc interval prolongation after adrenergic stimulation in cirrhosis.NEW & NOTEWORTHY Prevalence of cirrhotic cardiomyopathy is up to 50% in cirrhotic patients, and liver transplantation is the only treatment. However, cirrhotic cardiomyopathy is associated with perioperative morbidity and mortality after liver transplantation; therefore, management of cirrhotic cardiomyopathy is crucial for successful liver transplantation. This study shows cardiac myocyte specific overexpression of caveolin-3 (Cav-3) provides better cardiac contractile responses and less corrected QT prolongation during adrenergic stress in a cirrhotic cardiomyopathy model, suggesting beneficial effects of Cav-3 expression in cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- So Yeon Kim
- 1Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kang Ho Kim
- 2Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jan M. Schilling
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - Joseph Leem
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - Mehul Dhanani
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - Brian P. Head
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - David M. Roth
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - Alice E. Zemljic-Harpf
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| | - Hemal H. Patel
- 3Veterans Administration San Diego Healthcare System and the Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California
| |
Collapse
|
10
|
Clusterin Attenuates Hepatic Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Downregulating the Smad3 Signaling Pathway. Cells 2019; 8:cells8111442. [PMID: 31739636 PMCID: PMC6912488 DOI: 10.3390/cells8111442] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Clusterin is a glycoprotein that is expressed in most human tissues and found in body fluids. In our previous studies we demonstrated that clusterin has a protective effect against hepatic lipid accumulation and renal fibrosis; however, the role of clusterin in hepatic fibrosis is unknown. Here, we examined whether clusterin had protective effects against hepatic fibrosis using in vitro and in vivo models. Clusterin was upregulated in the livers of human cirrhotic patients and in thioacetamide (TAA)-induced and bile duct ligation mouse models of liver fibrosis. Loss and overexpression of clusterin promoted and attenuated hepatic fibrosis after TAA injection, respectively. In addition, we found that clusterin attenuates hepatic fibrosis by inhibiting the activation of hepatic stellate cells and Smad3 signaling pathways. Thus, clusterin plays an important role in hepatic fibrosis.
Collapse
|
11
|
El-Baz FK, Salama AAA, Hussein RA. Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats. Toxicol Rep 2019; 7:36-45. [PMID: 31879596 PMCID: PMC6920116 DOI: 10.1016/j.toxrep.2019.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Several hepatic pathological conditions are correlated with the stimulation of hepatic stellate cells. This induces a cascade of events producing accretion of extracellular matrix components triggering fibrosis. Dunaliella salina, rich in carotenoids, was investigated for its potential antagonizing activity; functionally and structurally against thioacetamide (TAA) - induced hepatic fibrosis in rats. Adult male albino Wistar rats were treated with three dose levels of D. salina powder or extract (daily, p.o.); for 6 weeks, concomitantly with TAA injection. Serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), bilirubin and albumin were determined. Reduced glutathione (GSH), malondialdehyde (MDA), smooth muscle actin alpha (α-SMA) and collagen I hepatic contents were also estimated. Treatment with D. salina powder or extract caused a significant decline in serum levels of AST, ALT, ALP, bilirubin, MDA and hepatic contents of α-SMA and collagen I. Additionally, serum albumin and GSH hepatic content were highly elevated. Liver histopathological examination also indicated that D. salina reduced fibrosis, centrilobular necrosis, and inflammatory cell infiltration evoked by TAA. The results implied that D. salina exerts protective action against TAA-induced hepatic fibrosis in rats. The phytochemical investigation revealed high total carotenoid content prominently β-carotene (15.2 % of the algal extract) as well as unsaturated fatty acids as alpha-linolenic acid which accounts for the hepatoprotective activity.
Collapse
Affiliation(s)
- Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, National Research Centre, 33 El Bohouth St., 12622 Dokki, Giza, Egypt
| |
Collapse
|
12
|
Abd El-Rahman SS, Fayed HM. Targeting AngII/AT1R signaling pathway by perindopril inhibits ongoing liver fibrosis in rat. J Tissue Eng Regen Med 2019; 13:2131-2141. [PMID: 31348596 DOI: 10.1002/term.2940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system (RAS) has a substantial role in liver fibrosis, cirrhosis, and portal hypertension. Hence, targeting RAS through angiotensin-converting enzyme (ACE) inhibitors can mend hepatic fibrosis; the current study was designed to examine the potential fibrosis inhibition activity of perindopril using a rat model of liver fibrosis induced by thioacetamide (TAA). Four groups of rats were used throughout this study, Group I (control group); rats received the vehicle. TAA was used for inducing liver fibrosis in rats by intraperitoneal injection of 200-mg/kg body weight twice a week for 6 weeks. Group II served as (TAA group). Rats of Groups III and IV were given perindopril at doses of 2 and 8 mg/kg 2 weeks after TAA administration and continued concomitantly with TAA till the end of the experiment. Injection of TAA resulted in a significant increase in aminotransferases' activities and bilirubin with a significant decrease in serum albumin and total protein and a significant decrease in hepatic content of GSH and SOD. Additionally, TAA injection raised the hepatic content of TGF-β1, α-SMA, TNF-α, and level of MDA. Histological and immunohistochemical data presented marked fibrosis in liver sections of TAA-administrated rats with increased collagen deposition, elevated METAVIR scoring, and increased expression of α-SMA, caspase-3, and AT1R. Oral dosing of perindopril for 4 weeks concomitant with TAA could mend the altered parameters near to normal values and abolished the ongoing fibrosis extension. In conclusion, these results demonstrated that perindopril, as ACE inhibitor, could grant a superior remedial nominee in preventing liver fibrosis progression through targeting angiotensin II formation.
Collapse
Affiliation(s)
| | - Hany M Fayed
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
13
|
MANF regulates splenic macrophage differentiation in mice. Immunol Lett 2019; 212:37-45. [PMID: 31226359 DOI: 10.1016/j.imlet.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Splenic immune cells, especially macrophages, play a key role in multiple pathological processes. With a proved anti-inflammatory and immunoregulatory function of mesencephalicastrocyte-derived neurotrophic factor (MANF) in inflammatory disorders, how MANF affects splenic immune cells in physiological and pathophysiological situations is still unknown. In this study, we constructed mono-macrophage-specific MANF knockout (Mø MANF-/-) mice and found the increased splenic M1 macrophages, but no significant change of splenic morphology and size compared with wild type (WT) mice. Also, we established the pathophysiological situation of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Under the hepatic fibrosis, splenic M2 macrophages and CD138+ plasma cells were significantly increased in Mø MANF-/- mice. Consistently, we found the increased TGF-β1 level in serum and spleen of Mø MANF-/- mice as well. Mono-macrophage-specific MANF knockout did not affect the number of splenic T and B cells under both the normal and hepatic fibrosis conditions. Our results suggest a distinct regulation of MANF on splenic immune cells and a specific regulation of MANF on the differentiation of splenic macrophages, which may exert a significant impact on physiological and pathophysiological processes of the spleen.
Collapse
|
14
|
He Y, Li S, Tang D, Peng Y, Meng J, Peng S, Deng Z, Qiu S, Liao X, Chen H, Tu S, Tao L, Peng Z, Yang H. Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation. Free Radic Biol Med 2019; 137:24-36. [PMID: 30991142 DOI: 10.1016/j.freeradbiomed.2019.04.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Sterile inflammation is initiated by damage-associated molecular patterns (DAMPs) and a key contributor to acute liver injury (ALI). However, the current knowledge on those DAMPs that activate hepatic inflammation under ALI remains incomplete. We report here that circulating peroxiredoxin-1 (Prdx1) is a novel DAMP for ALI. Intraperitoneal injection of acetaminophen (APAP) elicited a progressive course of ALI in mice, which was developed from 12 to 24 h post injection along with liver inflammation evident by macrophage infiltration and upregulations of cytokines (IL-1β, IL-6 and TNF-α); these alterations were concurrently occurred with a robust and progressive production of serum Prdx1. Similar observations were also obtained in carbon tetrachloride (CCl4)-induced ALI in mice. Removal of the source of serum Prdx1 protected mice deficient in Prdx1 from APAP and CCl4-induced liver injury, and decreased macrophage infiltration, IL-1β, IL-6 and TNF-α production. As a result, Prdx1-/- mice were strongly protected from APAP-induced death that was likely progressed from ALI. Additionally, intravenous re-introduction of recombinant Prdx1 (rPrdx1) in Prdx1-/- mice reversed or reduced all the above events, demonstrating an important contribution of circulating Prdx1 to ALI. rPrdx1 potently induced in primary macrophages the expression of pro-IL-1β, IL-6, TNF-α, and IL-1β through the NF-κB signaling as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, evident by caspase-1 activation. Furthermore, a significant elevation of serum Prdx1 was demonstrated in patients (n = 15) with ALI; the elevation is associated with ALI severity. Collectively, we provide the first demonstration for serum Prdx1 contributing to ALI.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sisi Qiu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Flood HM, Bolte C, Dasgupta N, Sharma A, Zhang Y, Gandhi CR, Kalin TV, Kalinichenko VV. The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis. Biol Open 2019; 8:bio039800. [PMID: 30670377 PMCID: PMC6398469 DOI: 10.1242/bio.039800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblast's transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated αSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1α2, Col5α2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs.
Collapse
Affiliation(s)
- Hannah M Flood
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Craig Bolte
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Yufang Zhang
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Tanya V Kalin
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| |
Collapse
|
16
|
Sharawy MH, Abdel-Rahman N, Megahed N, El-Awady MS. Paclitaxel alleviates liver fibrosis induced by bile duct ligation in rats: Role of TGF-β1, IL-10 and c-Myc. Life Sci 2018; 211:245-251. [PMID: 30243650 DOI: 10.1016/j.lfs.2018.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/06/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a global health issue that causes morbidity and mortality with no currently available treatment. It has been shown that low dose paclitaxel (PTX) can stabilize microtubules and inhibit the profibrotic transforming growth factor-beta 1 (TGF-β1) signaling pathway. In this study the effect of treatment with low dose PTX was examined using a model of cholestatic liver fibrosis. Bile-duct ligation (BDL) was induced in rats for 2 weeks then PTX (0.3 mg/kg/ip) was administered three times a week for 2 weeks. Administration of PTX ameliorated BDL-induced elevation in biomarkers of hepatocellular damage (alanine transaminase; ALT and aspartate transaminase; AST) and obstructive cholestatic injury (total bilirubin and gamma glutamyl transferase; γ-GT). PTX was able to correct the increase in liver weight to body weight ratio and the bile duct proliferation induced by BDL. Additionally, PTX treatment corrected the BDL-induced fibrosis of portal tracts, elevation of hydroxyproline content and increased alpha smooth muscle actin (α-SMA) mRNA and protein expression. This antifibrotic effect of PTX was further examined through its inhibitory effect on TGF-β1 mRNA and protein expression in addition to c-Myc mRNA expression. Furthermore, PTX rectified the BDL-induced decrease in interleukin-10 (IL-10) mRNA and protein expression. In conclusion, this study suggests that PTX at low dose has the potential to treat BDL-induced liver fibrosis in rats possibly through suppression of TGF-β1 and c-Myc and activation of IL-10 pathways.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Nirmeen Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
17
|
Harris TR, Kodani S, Rand AA, Yang J, Imai DM, Hwang SH, Hammock BD. Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 2018; 94:834-841. [PMID: 29844231 PMCID: PMC6022802 DOI: 10.1124/mol.118.111831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) selective inhibitor celecoxib is widely used in the treatment of pain and inflammation. Celecoxib has been explored as a possible treatment of liver fibrosis with contradictory results, depending on the model. The present study reports the effect of celecoxib in a 5-week carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Celecoxib alone and in combination with inhibitors of the enzyme-soluble epoxide hydrolase (sEH), as well as a dual inhibitor that targets both COX-2 and sEH, were administered via osmotic minipump to mice receiving intraperitoneal injections of CCl4 Collagen deposition was elevated in the mice treated with both celecoxib and CCl4 compared with the control or CCl4-only groups, as assessed by trichrome staining. Histopathology revealed more extensive fibrosis and cell death in the animals treated with both celecoxib and CCl4 compared with all other experimental groups. Although some markers of fibrosis, such as matrix metalloprotease, were unchanged or lowered in the animals treated with both celecoxib and CCl4, overall, hepatic fibrosis was more severe in this group. Cotreatment with celecoxib and an inhibitor of sEH or treatment with a dual inhibitor of COX-2 and sEH decreased the elevated levels of fibrotic markers observed in the group that received both celecoxib and CCl4 Oxylipid analysis revealed that celecoxib reduced the level of prostaglandin E2 relative to the CCl4 only group. Overall, celecoxib treatment did not decrease liver fibrosis in CCl4-treated mice.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sean Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Amy A Rand
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Denise M Imai
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| |
Collapse
|
18
|
Pant A, Kopec AK, Luyendyk JP. Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G171-G176. [PMID: 29723040 PMCID: PMC6139645 DOI: 10.1152/ajpgi.00402.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Liver is the primary source of numerous proteins that are critical for normal function of the blood coagulation cascade. Because of this, diseases of the liver, particularly when affiliated with severe complications like cirrhosis, are associated with abnormalities of blood clotting. Although conventional interpretation has inferred cirrhosis as a disorder of uniform bleeding risk, it is now increasingly appreciated as a disease wherein the coagulation cascade is precariously rebalanced. Moreover, prothrombotic risk factors are also associated with a more rapid progression of fibrosis in humans, suggesting that coagulation proteases participate in disease pathogenesis. Indeed, strong evidence drawn from experimental animal studies indicates that components of the coagulation cascade, particularly coagulation factor Xa and thrombin, drive profibrogenic events, leading to hepatic fibrosis. Here, we concisely review the evidence supporting a pathologic role for coagulation in the development of liver fibrosis and the potential mechanisms involved. Further, we highlight how studies in experimental animals may shed light on emerging clinical evidence, suggesting that beneficial effects of anticoagulation could extend beyond preventing thrombotic complications to include reducing pathologies like fibrosis.
Collapse
Affiliation(s)
- Asmita Pant
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
19
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
20
|
Kopec AK, Joshi N, Luyendyk JP. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost 2016; 14:1337-49. [PMID: 27060337 PMCID: PMC5091081 DOI: 10.1111/jth.13327] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Chronic liver damage is associated with unique changes in the hemostatic system. Patients with liver disease often show a precariously rebalanced hemostatic system, which is easily tipped towards bleeding or thrombotic complications by otherwise benign stimuli. In addition, some clinical studies have shown that hemostatic system components contribute to the progression of liver disease. There is a strong basic science foundation for clinical studies with this particular focus. Chronic and acute liver disease can be modeled in rodents and large animals with a variety of approaches, which span chronic exposure to toxic xenobiotics, diet-induced obesity, and surgical intervention. These experimental approaches have now provided strong evidence that, in addition to perturbations in hemostasis caused by liver disease, elements of the hemostatic system have powerful effects on the progression of experimental liver toxicity and disease. In this review, we cover the basis of the animal models that are most often utilized to assess the impact of the hemostatic system on liver disease, and highlight the role that coagulation proteases and their targets play in experimental liver toxicity and disease, emphasizing key similarities and differences between models. The need to characterize hemostatic changes in existing animal models and to develop novel animal models recapitulating the coagulopathy of chronic liver disease is highlighted. Finally, we emphasize the continued need to translate knowledge derived from highly applicable animal models to improve our understanding of the reciprocal interaction between liver disease and the hemostatic system in patients.
Collapse
Affiliation(s)
- Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|