1
|
Mavaddatiyan L, Naeini S, Khodabandeh S, Hosseini F, Skelton RP, Azizi V, Talkhabi M. Exploring the association between aging, ferroptosis, and common age-related diseases. Arch Gerontol Geriatr 2025; 135:105877. [PMID: 40339241 DOI: 10.1016/j.archger.2025.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
Aging is a natural biological process that is characterized by the progressive decline in physiological functions and an increased vulnerability to age-related diseases. The aging process is driven by different cell and molecular mechanisms. It has recently been shown that aging is associated with heightened vulnerability to ferroptosis (an intracellular iron-dependent form of programmed cell death). This susceptibility arises from various factors including oxidative stress, impaired antioxidant defences, and dysregulated iron homeostasis. The progressive decline in cellular antioxidant capacity and the accumulation of damaged components contribute to the increased susceptibility of aging cells to ferroptosis. Dysregulation of key regulators involved in ferroptosis, such as glutathione peroxidase 4 (GPX4), iron regulatory proteins, and lipid metabolism enzymes, further exacerbates this vulnerability. The decline in cellular defence mechanisms against ferroptosis during aging contributes to the accumulation of damaged cells and tissues, ultimately resulting in the manifestation of age-related diseases. Understanding the intricate relevance between aging and ferroptosis holds significant potential for developing strategies to counteract the detrimental effects of aging and age-related diseases. This will subsequently act to mitigate the negative consequences of aging and improving overall health in the elderly population. This review aims to clarify the relationship between aging and ferroptosis, and explores the underlying mechanisms and implications for age-related disorders, including neurodegenerative, cardiovascular, and neoplastic diseases. We also discuss the accumulating evidence suggesting that the imbalance of redox homeostasis and perturbations in iron metabolism contribute to the age-associated vulnerability to ferroptosis.
Collapse
Affiliation(s)
- Laleh Mavaddatiyan
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - SaghiHakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Khodabandeh
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - RhysJ P Skelton
- Flinders Medical Centre, Department of Ophthalmology, Bedford Park, Australia
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
3
|
Khodadadi H, Łuczyńska K, Winiarczyk D, Leszczyński P, Taniguchi H. NFE2L1 as a central regulator of proteostasis in neurodegenerative diseases: interplay with autophagy, ferroptosis, and the proteasome. Front Mol Neurosci 2025; 18:1551571. [PMID: 40375958 PMCID: PMC12078313 DOI: 10.3389/fnmol.2025.1551571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/14/2025] [Indexed: 05/18/2025] Open
Abstract
Maintaining proteostasis is critical for neuronal health, with its disruption underpinning the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Nuclear Factor Erythroid 2-Related Factor 1 (NFE2L1) has emerged as a key regulator of proteostasis, integrating proteasome function, autophagy, and ferroptosis to counteract oxidative stress and protein misfolding. This review synthesizes current knowledge on the role of NFE2L1 in maintaining neuronal homeostasis, focusing on its mechanisms for mitigating proteotoxic stress and supporting cellular health, offering protection against neurodegeneration. Furthermore, we discuss the pathological implications of NFE2L1 dysfunction and explore its potential as a therapeutic target. By highlighting gaps in the current understanding and presenting future research directions, this review aims to elucidate NFE2L1's role in advancing treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hossein Khodadadi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Kamila Łuczyńska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Dawid Winiarczyk
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Stem Cell Bioengineering Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| |
Collapse
|
4
|
Suchiita A, Gupta N, Nandi K, Goswami B. Navigating the crossroads of cell death interplay and intersections among ferroptosis, apoptosis and autophagy. Drug Metab Pers Ther 2025:dmdi-2024-0073. [PMID: 40278507 DOI: 10.1515/dmpt-2024-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
The review article, "Navigating the Crossroads of Cell Death: Interplay and Intersections Among Ferroptosis, Apoptosis, and Autophagy," delves into the complex interactions between these three key cell death pathways. Understanding how ferroptosis, apoptosis, and autophagy intersect is crucial for maintaining cellular homeostasis. Each pathway represents a unique mechanism of cell death, and recent research highlights their intricate interconnections and mutual influences. Exploring these relationships is vital for comprehending how cells make fate decisions and how these processes are implicated in various diseases. The review's significance lies in elucidating the molecular details of cell death and providing insight into how cells balance survival and death. The interplay among ferroptosis, apoptosis, and autophagy has important implications for developing therapeutic interventions, particularly in diseases where cell death regulation is disrupted. By examining the molecular crosstalk between these pathways, researchers can identify new drug targets and devise strategies to modulate cell fate effectively. This review aims to enhance our understanding of cell biology by offering a detailed perspective on the dynamic and interconnected nature of these cell death mechanisms.
Collapse
Affiliation(s)
| | - Navya Gupta
- 28862 Maulana Azad Medical College , New Delhi, India
| | - Kajal Nandi
- 28862 Maulana Azad Medical College , New Delhi, India
| | | |
Collapse
|
5
|
Tong L, Qiu J, Xu Y, Lian S, Xu Y, Wu X. Programmed Cell Death in Rheumatoid Arthritis. J Inflamm Res 2025; 18:2377-2393. [PMID: 39991656 PMCID: PMC11846511 DOI: 10.2147/jir.s499345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease characterised by synovial inflammation, synovial pannus formation and subsequent destruction of articular cartilage and bone. Programmed cell death (PCD), encompassing apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis, plays a pivotal role in the pathogenesis of RA. An imbalance in PCD causes a variety of immune cells to release large amounts of inflammatory factors and mediators that exacerbate not only chronic synovial inflammation, but also bone and joint damage. The purpose of this article is to review the relevant studies between PCD and RA, with the aim of providing further insights and considerations for a deeper understanding of the pathogenesis of RA and to guide clinical management.
Collapse
Affiliation(s)
- Luyuan Tong
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yalin Xu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Shijing Lian
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yanqiu Xu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
6
|
Ko SH, Cho KA, Li X, Ran Q, Liu Z, Chen L. GPX modulation promotes regenerative axonal fusion and functional recovery after injury through PSR-1 condensation. Nat Commun 2025; 16:1079. [PMID: 39870634 PMCID: PMC11772683 DOI: 10.1038/s41467-025-56382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C. elegans in a dose-sensitive manner. Ferroptosis-induced lipid peroxidation enhances injury-triggered phosphatidylserine exposure (PS) to promote axonal fusion through PS receptor (PSR-1) and EFF-1 fusogen. Axon injury induces PSR-1 condensate formation and disruption of PSR-1 condensation inhibits axonal fusion. Extending these findings to mammalian nerve repair, we show that loss of Glutathione peroxidase 4 (GPX4), a crucial suppressor of ferroptosis, promotes functional recovery after sciatic nerve injury. Applying ferroptosis inducers to mouse sciatic nerves retains nerve innervation and significantly enhances functional restoration after nerve transection and resuture without affecting axon regeneration. Our study reveals an evolutionarily conserved function of lipid peroxidation in promoting axonal fusion, providing insights for developing therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Kyung-Ah Cho
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Ashoub MH, Afgar A, Farsinejad A, Razavi R, Anvari S, Fatemi A. siRNA-mediated inhibition of hTERT enhances the effects of curcumin in promoting cell death in precursor-B acute lymphoblastic leukemia cells: an in silico and in vitro study. Sci Rep 2025; 15:3083. [PMID: 39856130 PMCID: PMC11760345 DOI: 10.1038/s41598-025-85329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination. Cell viability and proliferation were assessed via MTT and BrdU assays at 24- and 48-hour intervals post-treatment. Ferroptotic and oxidative markers were quantified using commercial assays, while cell death parameters and gene expression were evaluated through flow cytometry and qRT-PCR analyses. Molecular docking studies were performed to evaluate protein-ligand interactions. Results demonstrated that combined curcumin treatment and hTERT knockdown significantly enhanced cytotoxicity in Nalm-6 cells compared to individual interventions. This was characterized by the upregulation of ferroptosis promoters (lipid-ROS, Fe²⁺, ACSL4) and suppression of inhibitors (GSH, GPx, SLC7A11, GPx4). The response showed cell-line specificity, with Nalm-6 cells exhibiting enhanced ferroptotic sensitivity while REH cells underwent apoptotic cell death. Molecular docking revealed strong curcumin-protein interactions (∆G = -34.24 kcal/mol for hTERT). This study establishes hTERT as a critical regulator of ferroptotic cell death in pre-B ALL, operating through redox homeostasis, iron metabolism, and lipid peroxidation pathways. The cell-type-specific responses suggest promising therapeutic strategies through combined hTERT suppression and ferroptosis induction.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
8
|
Zuo J, Tian YX, An Q, Wu BY, Yang JR, Fan YC. Potential Biomarkers and Therapeutic Targets in Hepatitis B Virus-related Acute Liver Failure: Interplay of the Ferroptosis, Autophagy and Immune Responses. Int J Med Sci 2025; 22:806-818. [PMID: 39991755 PMCID: PMC11843133 DOI: 10.7150/ijms.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/11/2025] [Indexed: 02/12/2025] Open
Abstract
Hepatitis B virus-related acute liver failure (HBV-ALF) is characterized by a high fatality rate, its pathogenesis remains unclear and the therapeutic efficacy is limited. Ferroptosis which closely related to autophagy may be an underlying mechanism of HBV-ALF. The aim of this study was to identify key ferroptosis- and autophagy-related genes and pathways and provide insight into potential therapeutic approaches for HBV-ALF. We accessed the GSE14668 and GSE96851 datasets from the Gene Expression Omnibus (GEO) database and focused on differentially expressed genes (DEGs), ferroptosis-related DEGs (FRGs) and autophagy-related DEGs (ARGs). Hub genes were subsequently analyzed for enrichment, protein‒protein interactions (PPIs), and different immunological microenvironments, and potential hub gene were identified using MCC method and LASSO. Gene-targeted drugs were from the DGIdb and DrugBank databases.A total of 1462 DEGs were identified (726 upregulated and 736 downregulated). Enriched pathways included amino acid metabolism and immune and inflammatory responses, potentially serving as biomarkers for ALF pathogenesis. After integration with the FerrDb and HADb databases, 55 FRGs and 45 ARGs were identified. Thirteen hub genes (SLC7A11, HMOX1, G6PD, RRM2, KIF20A, HELLS, GPT2, GLS2, SPP1, CCR2, DCN, IRS1, and IGF1) were identified which closely associated with the immune microenvironment. Interplay among these genes occurred primarily through HMOX1. Moreover, we identified several hub gene-targeted drugs that may be effective in HBV-ALF treatment, such as riluzole, acetylcysteine, NADH and Vitamin E.Thirteen hub genes may play crucial roles in HBV-ALF progression, particularly, the HMOX1. Furthermore, drug target exploration offered promising avenues for therapeutic intervention in patients with HBV-ALF.
Collapse
Affiliation(s)
- Jing Zuo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Yu-Xin Tian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Qi An
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Bai-Yun Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
9
|
Zhong L, Zheng J, Wang Z, Lin L, Cong Q, Qiao L. Metabolomics and proteomics reveal the inhibitory effect of Lactobacillus crispatus on cervical cancer. Talanta 2025; 281:126839. [PMID: 39265423 DOI: 10.1016/j.talanta.2024.126839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cervical cancer remains a significant global health issue due to its high morbidity and mortality rates. Recently, Lactobacillus crispatus has been recognized for its crucial role in maintaining cervical health. While some studies have explored the use of L. crispatus to mitigate cervical cancer, the underlying mechanisms remain largely unknown. In this study, we employed non-targeted proteomics and metabolomics to investigate how L. crispatus affects the growth of cervical cancer cells (SiHa) and normal cervical cells (Ect1/E6E7). Our findings indicated that the inhibitory effect of L. crispatus on SiHa cells was associated with various biological processes, notably the ferroptosis pathway. Specifically, L. crispatus was found to regulate the expression of proteins such as HMOX1, SLC39A14, VDAC2, ACSL4, and LPCAT3 by SiHa cells, which are closely related to ferroptosis. Additionally, it activated the tricarboxylic acid (TCA) cycle in SiHa cells, leading to increased levels of reactive oxygen species (ROS) and lipid peroxides (LPO). These results revealed the therapeutic potential of L. crispatus in targeting the ferroptosis pathway for cervical cancer treatment, opening new avenues for research and therapy in cervical cancer.
Collapse
Affiliation(s)
- Lingyan Zhong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Jianxujie Zheng
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Zengyu Wang
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Qing Cong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
10
|
Xu C, Wen S, Du X, Zou X, Leung ELH, Zhou G, Wu Q, Shen B. Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy. Pharmacol Res 2025; 211:107553. [PMID: 39706282 DOI: 10.1016/j.phrs.2024.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach. Sesquiterpene lactones represent a diverse and extensive class of plant-derived phytochemicals that serve as potential sources for developing various drugs. Recent studies have shown that sesquiterpene lactones have promising potential in cancer treatment. This review systematically summarizes recent progress in the study of sesquiterpene lactones as antitumor agents, highlighting their role in targeting various RCD pathways, including those involved in apoptosis, autophagy, ferroptosis, necroptosis, and cuproptosis. The primary purpose of the present review is to provide a clear picture of the regulation of RCD by sesquiterpene lactones against different targets in various cancers, which will facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xinhua Zou
- Department of Vascular and Tumor Interventional Medicine, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | | | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China.
| |
Collapse
|
11
|
Xie B, Chen Q, Dai Z, Jiang C, Sun J, Guan A, Chen X. Prognostic significance of a 3-gene ferroptosis-related signature in lung cancer via LASSO analysis and cellular functions of UBE2Z. Comput Biol Chem 2024; 113:108192. [PMID: 39243550 DOI: 10.1016/j.compbiolchem.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a newly identified form of non-apoptotic programmed cell death resulting from iron-dependent lipid peroxidation. It is controlled by integrated oxidation and antioxidant systems. Ferroptosis exerts a crucial effect on the carcinogenesis of several cancers, including pulmonary cancer. Herein, a ferroptosis-associated gene signature for lung cancer prognosis and diagnosis was identified using integrative bioinformatics analyses. From the FerrDB database, 256 ferroptotic regulators and markers were identified. Of these, 25 exhibited differential expression between lung cancer and non-cancerous samples, as evidenced by the GSE19804 and GSE7670 datasets from the GEO database. Utilizing LASSO Cox regression analysis on TCGA-LUAD data, a potent 3-gene risk signature comprising CAV1, RRM2, and EGFR was established. This signature adeptly differentiates various survival outcomes in lung cancer patients, including overall survival and disease-specific intervals. Based on the 3-gene risk signature, lung cancer patients were categorized into high-risk and low-risk groups. Comparative analysis revealed 69 differentially expressed genes between these groups, with UBE2Z significantly associated with overall survival in TCGA-LUAD. UBE2Z was found to be upregulated in LUAD tissues and cells compared to normal controls. Functionally, the knockdown of UBE2Z curtailed aggressive behaviors in LUAD cells, including viability, migration, and invasion. Moreover, this knockdown led to a decrease in the mesenchymal marker vimentin while elevating the epithelial marker E-cadherin within LUAD cell lines. In conclusion, the ferroptosis-associated 3-gene risk signature effectively differentiates prognosis and clinical features in patients with lung cancer. UBE2Z was identified through this model, and it is upregulated in LUAD samples. Its knockdown inhibits aggressive cellular behaviors, suggesting UBE2Z's potential as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyi Sun
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
12
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Cominelli G, Lonati C, Pinto D, Rinaldi F, Franco C, Favero G, Rezzani R. Melatonin Attenuates Ferritinophagy/Ferroptosis by Acting on Autophagy in the Liver of an Autistic Mouse Model BTBR T +Itpr3 tf/J. Int J Mol Sci 2024; 25:12598. [PMID: 39684310 DOI: 10.3390/ijms252312598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was to investigate the effects of melatonin (MLT) in treating ASDs using an autistic mouse model BTBR T+Itpr3tf/J (BTBR). We evaluated the hepatic cytoarchitecture and some markers of autophagy, ferritinophagy/ferroptosis, in BTBR mice treated and not-treated with MLT. The hepatic morphology and the autophagy and ferritinophagy/ferroptosis pathways were analyzed by histological, immunohistochemical, and Western blotting techniques. We studied p62 and microtubule-associated protein 1 light chain 3 B (LC3B) for evaluating the autophagy; nuclear receptor co-activator 4 (NCOA4) and long-chain-coenzyme synthase (ACSL4) for monitoring ferritinophagy/ferroptosis. The liver of BTBR mice revealed that the hepatocytes showed many cytoplasmic inclusions recognized as Mallory-Denk bodies (MDBs); the expression and levels of p62 and LC3B were downregulated, whereas ACSL4 and NCOA4 were upregulated, as compared to control animals. MLT administration to BTBR mice ameliorated liver damage and reduced the impairment of autophagy and ferritinophagy/ferroptosis. In conclusion, we observed that MLT alleviates liver damage in BTBR mice by improving the degradation of intracellular MDBs, promoting autophagy, and suppressing ferritinophagy/ferroptosis.
Collapse
Affiliation(s)
- Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudio Lonati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
14
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [PMID: 39582563 PMCID: PMC11580571 DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the understanding of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like ferritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
15
|
Pei J, Wei Y, Lv L, Tao H, Zhang H, Ma Y, Han L. Preliminary evidence for the presence of programmed cell death in pressure injuries. J Tissue Viability 2024; 33:720-725. [PMID: 39095251 DOI: 10.1016/j.jtv.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Pressure injuries (PIs) are a common healthcare problem worldwide and are considered to be the most expensive chronic wounds after arterial ulcers. Although the gross factors including ischemia-reperfusion (I/R) have been identified in the etiology of PIs, the precise cellular and molecular mechanisms contributing to PIs development remain unclear. Various forms of programmed cell death including apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis have been identified in PIs. In this paper, we present a detailed overview on various forms of cell death; discuss the recent advances in the roles of cell death in the occurrence and development of PIs and found much of the evidence is novel and based on animal experiments. Herein, we also state critical evaluation of the existing data and future perspective in the field. A better understanding of the programmed cell death mechanism in PIs may have important implications in driving the development of new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Juhong Pei
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuting Wei
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxia Tao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - HongYan Zhang
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - YuXia Ma
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; School of Nursing, Lanzhou University, Lanzhou, Gansu, China; Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
16
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Cao S, Wei Y, Yue Y, Wang D, Yang J, Xiong A, Zeng H. Mapping the evolution and research landscape of ferroptosis-targeted nanomedicine: insights from a scientometric analysis. Front Pharmacol 2024; 15:1477938. [PMID: 39386034 PMCID: PMC11461269 DOI: 10.3389/fphar.2024.1477938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Notable progress has been made in "ferroptosis-based nano drug delivery systems (NDDSs)" over the past 11 years. Despite the ongoing absence of a comprehensive scientometric overview and up-to-date scientific mapping research, especially regarding the evolution, critical research pathways, current research landscape, central investigative themes, and future directions. Methods Data ranging from 1 January 2012, to 30 November 2023, were obtained from the Web of Science database. A variety of advanced analytical tools were employed for detailed scientometric and visual analyses. Results The results show that China significantly led the field, contributing 82.09% of the total publications, thereby largely shaping the research domain. Chen Yu emerged as the most productive author in this field. Notably, the journal ACS Nano had the greatest number of relevant publications. The study identified liver neoplasms, pancreatic neoplasms, gliomas, neoplasm metastases, and melanomas as the top five crucial disorders in this research area. Conclusion This research provides a comprehensive scientometric assessment, enhancing our understanding of NDDSs focused on ferroptosis. Consequently, it enables rapid access to essential information and facilitates the extraction of novel ideas in the field of ferroptotic nanomedicine for both experienced and emerging researchers.
Collapse
Affiliation(s)
- Siyang Cao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
DJALDETTI MEIR. Immunomodulatory and chemopreventive effects of resveratrol on the digestive system cancers. Oncol Res 2024; 32:1389-1399. [PMID: 39220125 PMCID: PMC11361903 DOI: 10.32604/or.2024.049745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Resveratrol (RSV), the primary polyphenol found in grapes, has been revealed to have anti-inflammatory properties by reducing the capacity of the peripheral blood mononuclear cells to produce pro-inflammatory cytokines, including IL-1β, IL-6, IL-1ra and TNFα. Considering the close association between chronic inflammation and cancer development, RSV's immunomodulatory properties are one way by which the polyphenol may inhibit cancer initiation, proliferation, neovascularization, and migration. Resveratrol influences the generation of microtumor environment which is one of the key factors in cancer progress. In addition to immunomodulation, RSV inhibits cancer development by expressing anti-oxidant effects, causing cell cycle arrest, stimulating the function of certain enzymes, and activating cell signaling pathways. The end outcome is one of the various forms of cell death, including apoptosis, pyroptosis, necroptosis, and more, as it has been observed in vitro. RSV has been shown to act against cancer in practically every organ, while its effects on colon cancer have been documented more frequently. It is remarkable that longer-term clinical studies that may have established the potential for this natural substance to serve as a therapeutic adjuvant to traditional anti-cancer medications were not prompted by the encouraging outcomes seen with cancer cells treated with non-toxic doses of resveratrol. The current review aims to assess the recent findings about the immunological and anti-cancer characteristics of RSV, with a particular emphasis on cancers of the digestive tract, as a challenge for future clinical research that may contribute to the better prognosis of cancer.
Collapse
Affiliation(s)
- MEIR DJALDETTI
- />Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
19
|
Luo M, Luan X, Yang C, Chen X, Yuan S, Cao Y, Zhang J, Xie J, Luo Q, Chen L, Li S, Xiang W, Zhou J. Revisiting the potential of regulated cell death in glioma treatment: a focus on autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis, immunogenic cell death, and the crosstalk between them. Front Oncol 2024; 14:1397863. [PMID: 39184045 PMCID: PMC11341384 DOI: 10.3389/fonc.2024.1397863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.6 months. Consequently, there is an urgent necessity to explore innovative therapeutic strategies for treating glioma. The foundational study of regulated cell death (RCD) can be traced back to Karl Vogt's seminal observations of cellular demise in toads, which were documented in 1842. In the past decade, the Nomenclature Committee on Cell Death (NCCD) has systematically classified and delineated various forms and mechanisms of cell death, synthesizing morphological, biochemical, and functional characteristics. Cell death primarily manifests in two forms: accidental cell death (ACD), which is caused by external factors such as physical, chemical, or mechanical disruptions; and RCD, a gene-directed intrinsic process that coordinates an orderly cellular demise in response to both physiological and pathological cues. Advancements in our understanding of RCD have shed light on the manipulation of cell death modulation - either through induction or suppression - as a potentially groundbreaking approach in oncology, holding significant promise. However, obstacles persist at the interface of research and clinical application, with significant impediments encountered in translating to therapeutic modalities. It is increasingly apparent that an integrative examination of the molecular underpinnings of cell death is imperative for advancing the field, particularly within the framework of inter-pathway functional synergy. In this review, we provide an overview of various forms of RCD, including autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis and immunogenic cell death. We summarize the latest advancements in understanding the molecular mechanisms that regulate RCD in glioma and explore the interconnections between different cell death processes. By comprehending these connections and developing targeted strategies, we have the potential to enhance glioma therapy through manipulation of RCD.
Collapse
Affiliation(s)
- Maowen Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiaofan Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suxin Yuan
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Youlin Cao
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jing Zhang
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jiaying Xie
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Wang M, Zhang BQ, Ma S, Xu Y, Zhao DH, Zhang JS, Li CJ, Zhou X, Zheng LW. Broadening horizons: the role of ferroptosis in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1390013. [PMID: 39157678 PMCID: PMC11327064 DOI: 10.3389/fendo.2024.1390013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common heterogeneous reproductive endocrine metabolic disorder in women of reproductive age characterized by clinical and biochemical hyperandrogenemia, ovulation disorders, and polycystic ovarian morphology. Ferroptosis is a novel type of cell death driven by iron accumulation and lipid peroxidation. Ferroptosis plays a role in maintaining redox balance, iron metabolism, lipid metabolism, amino acid metabolism, mitochondrial activity, and many other signaling pathways linked to diseases. Iron overload is closely related to insulin resistance, decreased glucose tolerance, and the occurrence of diabetes mellitus. There is limited research on the role of ferroptosis in PCOS. Patients with PCOS have elevated levels of ferritin and increased reactive oxygen species in ovarian GCs. Studying ferroptosis in PCOS patients is highly important for achieving personalized treatment. This article reviews the progress of research on ferroptosis in PCOS, introduces the potential connections between iron metabolism abnormalities and oxidative stress-mediated PCOS, and provides a theoretical basis for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Bo-Qi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Jing-Shun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Chun-Jin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Duan YH, Wang HL, Liu MN, Xu TM, Zhang K. Reflections on the complex mechanisms of endometriosis from the perspective of ferroptosis. Pathol Res Pract 2024; 259:155353. [PMID: 38797129 DOI: 10.1016/j.prp.2024.155353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.
Collapse
Affiliation(s)
- Yu-Han Duan
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - He-Lin Wang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Meng-Na Liu
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tian-Min Xu
- Obstetrics and Gynaecology, the Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Medical Research Center, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
22
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
23
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
24
|
Rahimipour Anaraki S, Farzami P, Hosseini Nasab SS, Kousari A, Fazlollahpour Naghibi A, Shariat Zadeh M, Barati R, Taha SR, Karimian A, Nabi-Afjadi M, Yousefi B. Natural products and the balancing act of autophagy-dependent/independent ferroptosis in cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2531-2549. [PMID: 37878043 DOI: 10.1007/s00210-023-02782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
The control of biological cell death is essential for the body's appropriate growth. The resistance of cells to the apoptotic process presents a new difficulty in the treatment of cancer. To combat cancer cells, researchers are working to find new apoptotic pathways and components to activate. One of the processes of regulated cell death (RCD) is referred to as ferroptosis marked by a decline in the activity of lipid glutathione peroxidase 4 (GPX4) after the buildup of reactive oxygen species (ROS). Since lipid peroxidation is a crucial component of ferroptosis and is required for its start, numerous medicines have been studied, particularly for the treatment of cancer. In this context, autophagy is an additional form of RCD that can govern ferroptosis through shared signaling pathways/factors involved in both mechanisms. In this review, we will explore the molecular mechanisms underlying ferroptosis and its association with autophagy, to gain fresh insights into their interplay in cancer advancement, and the potential of natural products for its treatment.
Collapse
Affiliation(s)
| | - Payam Farzami
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Kousari
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Reza Barati
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Wang Q, Liu C, Chen M, Zhao J, Wang D, Gao P, Zhang C, Zhao H. Mastoparan M promotes functional recovery in stroke mice by activating autophagy and inhibiting ferroptosis. Biomed Pharmacother 2024; 174:116560. [PMID: 38583338 DOI: 10.1016/j.biopha.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 μg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 μg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
26
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
27
|
Zhu Y, Ma XY, Cui LG, Xu YR, Li CX, Talukder M, Li XN, Li JL. Di (2-ethylhexyl) phthalate induced lipophagy-related renal ferroptosis in quail (Coturnix japonica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170724. [PMID: 38325449 DOI: 10.1016/j.scitotenv.2024.170724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.
Collapse
Affiliation(s)
- Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling-Ge Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Mao R, Yang Y, Zheng L, Liang X, Jia Y, Shao Y. Role of circPSEN1 in carbon black and cadmium co-exposure induced autophagy-dependent ferroptosis in respiratory epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123562. [PMID: 38365078 DOI: 10.1016/j.envpol.2024.123562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Carbon black and cadmium (Cd) are important components of atmospheric particulate matter and cigarette smoke that are closely associated with the occurrence and development of lung diseases. Carbon black, particularly carbon black nanoparticles (CBNPs), can easily adsorbs metals and cause severe lung damage and even cell death. Therefore, this study aimed to explore the mechanisms underlying the combined toxicity of CBNPs and Cd. We found that the combined exposure to CBNPs and Cd promoted significantly greater autophagosome formation and ferroptosis (increased malonaldehyde (MDA), reactive oxygen species (ROS), and divalent iron ions (Fe2+) levels and altered ferroptosis-related proteins) compared with single exposure in both 16HBE cells (human bronchial epithelioid cells) and mouse lung tissues. The levels of ferroptosis proteins, transferrin receptor protein 1 (TFRC) and glutathione peroxidase 4 (GPX4), were restored by CBNPs-Cd exposure following treatment with a 3-MA inhibitor. Additionally, under CBNPs-Cd exposure, circPSEN1 overexpression inhibited increases in the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3II/I) and sequestosome-1 (P62). Moreover, increases in TFRC and Fe2+, and decreases in GPX4were inhibited. Knockdown of circPSEN1 reversed these effects. circPSEN1 interacts with autophagy-related gene 5 (ATG5) protein and upregulates nuclear receptor coactivator 4 (NCOA4), the co-interacting protein of ATG5, thereby degrading ferritin heavy chain 1 (FTH1) and increasing Fe2+ in 16HBE cells. These results indicated that the combined exposure to CBNPs and Cd promoted the binding of circPSEN1 to ATG5, thereby increasing autophagosome synthesis and ATG5-NCOA4-FTH1 axis activation, ultimately inducing autophagy-dependent ferroptosis in 16HBE cells and mouse lung tissues. This study provides novel insights into the toxic effects of CBNPs and Cd in mixed pollutants.
Collapse
Affiliation(s)
- Rulin Mao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yusi Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaohong Liang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
31
|
Liu S, Yue M, Lu Y, Wang Y, Luo S, Liu X, Jiang J. Advancing the frontiers of colorectal cancer treatment: harnessing ferroptosis regulation. Apoptosis 2024; 29:86-102. [PMID: 37752371 DOI: 10.1007/s10495-023-01891-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
In recent years, colorectal cancer incidence and mortality have increased significantly due to poor lifestyle choices. Despite the development of various treatments, their effectiveness against advanced/metastatic colorectal cancer remains unsatisfactory due to drug resistance. However, ferroptosis, a novel iron-dependent cell death process induced by lipid peroxidation and elevated reactive oxygen species (ROS) levels along with reduced activity of the glutathione peroxidase 4 (GPX4) antioxidant enzyme system, shows promise as a therapeutic target for colorectal cancer. This review aims to delve into the regulatory mechanisms of ferroptosis in colorectal cancer, providing valuable insights into potential therapeutic approaches. By targeting ferroptosis, new avenues can be explored for innovative therapies to combat colorectal cancer more effectively. In addition, understanding the molecular pathways involved in ferroptosis may help identify biomarkers for prognosis and treatment response, paving the way for personalized medicine approaches. Furthermore, exploring the interplay between ferroptosis and other cellular processes can uncover combination therapies that enhance treatment efficacy. Investigating the tumor microenvironment's role in regulating ferroptosis may offer strategies to sensitize cancer cells to cell death induction, leading to improved outcomes. Overall, ferroptosis presents a promising avenue for advancing the treatment of colorectal cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Siyue Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ming Yue
- Department of Pharmacy, Tongji Medical College, the Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ying Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoliu Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
32
|
Tao J, Tu C, Xu Z, Bai Y, Chen B, Yang S, Huang X, Zhang L, Liu L, Lin L, Qin Z. The infection of Aeromonas hydrophila activated Multiple programmed cell death pathways in red blood cells of Clarias fuscus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109315. [PMID: 38134975 DOI: 10.1016/j.fsi.2023.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4 h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4 h, and alterations in the ferroptosis pathway were observed at 8 h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8 h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.
Collapse
Affiliation(s)
- Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zizheng Xu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
33
|
Zhu H, Zhong Y, Chen R, Wang L, Li Y, Jian Z, Gu L, Xiong X. ATG5 Knockdown Attenuates Ischemia‒Reperfusion Injury by Reducing Excessive Autophagy-Induced Ferroptosis. Transl Stroke Res 2024; 15:153-164. [PMID: 36522583 DOI: 10.1007/s12975-022-01118-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Autophagy has been described to be both protective and pathogenic in cerebral ischemia/reperfusion (I/R) injury. The underlying association between autophagy and ferroptosis in ischemic stroke has not yet been clearly investigated. The purpose of this study was to explore the role of autophagy-related gene 5 (ATG5) in experimental ischemic stroke. After injection of ATG5 shRNA lentivirus, mice underwent surgery for transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. The infarct volume, neurological function, apoptosis, reactive oxygen species (ROS), autophagy, and ferroptosis levels were evaluated. After MCAO, ATG5-knockdown mice had a smaller infarct size and fewer neurological deficits than wild-type mice. The levels of apoptosis and ROS in ischemic mouse brains were alleviated through ATG5 knockdown. The expression of LC3 I/II was reduced through ATG5 knockdown after MCAO. Additionally, the expression of beclin1 and LC3 II was increased after I/R, but the increase was counteracted by preconditioning with ATG5 knockdown. After ischemic stroke, the levels of Fe2+ and malondialdehyde (MDA) were increased, but they were reduced by ATG5 knockdown. Similarly, the expression of glutathione peroxidase 4 (GPX4) and glutathione (GSH) was decreased by I/R but elevated by ATG5 knockdown. The present study shows that ATG5 knockdown attenuates autophagy-induced ferroptosis, which may offer a novel potential approach for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
LIU CHAO. Screen for autophagy-related biomarkers in osteoarthritis based on bioinformatic analysis. BIOCELL 2024; 48:339-351. [DOI: 10.32604/biocell.2023.047044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 01/06/2025]
|
35
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P, Xie J. Ferroptosis in cardiovascular disease. Biomed Pharmacother 2024; 170:116057. [PMID: 38159373 DOI: 10.1016/j.biopha.2023.116057] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In the 21st century, cardiovascular disease (CVD) has become one of the leading causes of death worldwide. The prevention and treatment of CVD remain pressing scientific issues. Several recent studies have suggested that ferroptosis may play a key role in CVD. Most studies conducted thus far on ferroptosis and CVD have supported the link. Ferroptosis mediated by different signaling and metabolic pathways can lead to ischemic heart disease, myocarditis, heart failure, ischemia-reperfusion injury, and cardiomyopathy. Still, the specific mechanism of ferroptosis in CVD, the particular organ areas affected, and the stage of disease involved need to be further studied. Therefore, understanding the mechanisms regulating ferroptosis in CVD may improve disease management. Throughout this review, we summarized the mechanism of ferroptosis and its effect on the pathogenesis of CVD. We also predicted and discussed future research directions, aiming to provide new ideas and strategies for preventing and treating CVD.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyong Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Siyuan Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rumao Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peichun He
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
36
|
Zhang H, Gao Y, Wang C, Huang X, Li T, Li K, Peng R, Li F, Li L, Zhang X, Yin L, Zhang S, Zhang J. NCOA4-mediated ferritinophagy aggravate intestinal oxidative stress and ferroptosis after traumatic brain injury. Biochem Biophys Res Commun 2023; 688:149065. [PMID: 37979398 DOI: 10.1016/j.bbrc.2023.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 11/20/2023]
Abstract
Intestinal injury caused by traumatic brain injury (TBI) seriously affects patient prognosis; however, the underlying mechanisms are unknown. Recent studies have demonstrated that ferritinophagy-mediated ferroptosis is involved in several intestinal disorders. However, uncertainty persists regarding the role of ferritinophagy-mediated ferroptosis in the intestinal damage caused by TBI. High-throughput transcriptional sequencing was used to identify the genes that were differentially expressed in the intestine after TBI. The intestinal tissues were harvested for hematoxylin and eosin staining (HE), immunofluorescence, and western blot (WB). Lipid peroxide markers and iron content in the intestines were determined using the corresponding kits. High throughput sequencing revealed that the ferroptosis signaling pathway was enriched, demonstrating that intestinal damage caused by TBI may include ferroptosis. Chiu's score, tight junction proteins, and lipid peroxide indicators demonstrated that TBI caused an intestinal mucosal injury that persisted for several days. The ferroptosis pathway-related proteins, ferritin heavy polypeptide 1 (Fth1) and glutathione peroxidase 4 (GPX4), exhibited dynamic changes. The results indicated that lipid peroxide products were markedly increased, whereas antioxidant enzymes were markedly decreased. WB analysis demonstrated that the expression levels of nuclear receptor coactivator 4 (NCOA4), LC3II/LC3I, and p62 were markedly upregulated, whereas those of GPX4 and Fth1 were markedly downregulated. In addition, ferrostatin-1 attenuates intestinal ferroptosis and injury post-TBI in vivo. Intriguingly, 3-methyladenine (3-MA) reduces intestinal ferritin decomposition, iron accumulation, and ferroptosis after TBI. Moreover, 3-MA markedly reduced intestinal apoptosis. In conclusion, NCOA4 mediated ferritinophagy and ferroptosis play roles in intestinal oxidative stress injury post-TBI. This study provides a deeper understanding of the mechanisms underlying intestinal damage following TBI.
Collapse
Affiliation(s)
- Hejun Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, 066000, PR China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, PR China
| | - Cong Wang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Tuo Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, 264000, PR China
| | - Kaiji Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Ruilong Peng
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Fanjian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China
| | - Xu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Medical College of Nankai University, Tianjin, 300000, PR China
| | - Lichuan Yin
- Characteristic Medical Center of Chinese People's Armed Police Force, PR China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, PR China.
| |
Collapse
|
37
|
Zhang G, Mi W, Wang C, Li J, Zhang Y, Liu N, Jiang M, Jia G, Wang F, Yang G, Zhang L, Wang J, Fu Y, Zhang Y. Targeting AKT induced Ferroptosis through FTO/YTHDF2-dependent GPX4 m6A methylation up-regulating and degradating in colorectal cancer. Cell Death Discov 2023; 9:457. [PMID: 38102129 PMCID: PMC10724184 DOI: 10.1038/s41420-023-01746-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Ferroptosis is a new type of iron-dependent programmed cell death induced by lipid peroxidation. However, the underlying mechanisms and function in tumor therapy still remain undisclosed especially in post-transcription regulation. Here, we found that targeting AKT significantly induced GPX4 dependent ferroptosis and suppressed colorectal cancer growth both in vitro and in vivo. During this process, demethylase FTO was downregulated, which increased the m6A methylation level of GPX4, subsequently recognized by YTHDF2 and degraded. Prediction results showed that there are three potential methylated sites (193/647/766), and 193 site was identified as the right one, which was demethylated by FTO and read by YTHDF2. In parallel, AKT inhibition caused the accumulation of ROS which had a negative feedback on GPX4 expression. In addition, protective autophagy was initiated by MK2206 stimulation, while blocking autophagy further increased ferroptosis and markedly enhanced the anti-tumor activity of MK2206. In a word, inhibiting AKT activated ferroptosis through FTO/YTHDF2/GPX4 axis to suppress colon cancer progression, which raised FTO/GPX4 as potential biomarkers and targets in colorectal cancer therapy.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Wunan Mi
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chuyue Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Guiyun Jia
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
38
|
Hung CS, Lee KL, Huang WJ, Su FH, Liang YC. Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16467. [PMID: 38003657 PMCID: PMC10671009 DOI: 10.3390/ijms242216467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-He Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
39
|
Liu S, Zhai J, Li D, Peng Y, Wang Y, Dai B. Identification and validation of molecular subtypes' characteristics in bladder urothelial carcinoma based on autophagy-dependent ferroptosis. Heliyon 2023; 9:e21092. [PMID: 37920516 PMCID: PMC10618552 DOI: 10.1016/j.heliyon.2023.e21092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nowadays, more evidences indicated that autophagy-dependent ferroptosis regulatory molecules (ADFRMs) may be closely related to various tumors. In current study, we intended to establish a prognostic ADFRMs signature and investigated its potential roles in bladder urothelial carcinoma (BLCA). Methods Two distinct clusters were determined by consensus clustering with expression of 119 identified ADFRMs in BLCA. The tumor microenvironment was investigated through "CIBERSORT" algorithm, and enrichment analyses were utilized to seek molecular characteristics of differentially expressed genes (DEGs) between clusters. Moreover, a 2-ADFRMs prognostic signature including TRIB3 and WIPI1 was identified in TCGA cohort and further evaluated in the GSE13507 cohort. The qRT-PCR was conducted to examine the expression of prognostic genes. Further, the risk score was gained through calculating the level of TRIB3 and WIPI1 expression through the coefficient. The correlations between risk score with clinicopathologica features, tumor microenvironment, and drug sensitivity were explored. Results Patients in TCGA-BLCA were grouped into two clusters with different expression patterns of ADFRMs. And the overall survival, tumor microenvironment and biological functions were significant different between two clusters. Moreover, a 2-ADFRMs model was constructed, and patients were separated into a low-risk and high-risk group. Survival analysis indicated patients with low risk promised a good prognosis, suggesting the risk score determined with ADFRMs signature exhibited an acceptable capacity for survival prediction in BLCA. Correlation analysis demonstrated risk score had close ties with age, stage, and tumor microenvironment. In vivo, the expression of prognostic genes was identified to be up-regulated in BLCA cell line T24. Conclusion The constructed 2-ADFRMs signature was a promising model to predict prognosis and correlated with tumor microenvironment, which had latent clinical value in the intervention for BLCA.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jing Zhai
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| |
Collapse
|
40
|
Liu T, Wang P, Yin H, Wang X, Lv J, Yuan J, Zhu J, Wang Y. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP +-induced models of Parkinson's disease. Neural Regen Res 2023; 18:2514-2519. [PMID: 37282484 PMCID: PMC10360095 DOI: 10.4103/1673-5374.371381] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disorder, and ferroptosis plays a significant role in the pathological mechanism underlying Parkinson's disease. Rapamycin, an autophagy inducer, has been shown to have neuroprotective effects in Parkinson's disease. However, the link between rapamycin and ferroptosis in Parkinson's disease is not entirely clear. In this study, rapamycin was administered to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model and a 1-methyl-4-phenylpyridinium-induced Parkinson's disease PC12 cell model. The results showed that rapamycin improved the behavioral symptoms of Parkinson's disease model mice, reduced the loss of dopamine neurons in the substantia nigra pars compacta, and reduced the expression of ferroptosis-related indicators (glutathione peroxidase 4, recombinant solute carrier family 7, member 11, glutathione, malondialdehyde, and reactive oxygen species). In the Parkinson's disease cell model, rapamycin improved cell viability and reduced ferroptosis. The neuroprotective effect of rapamycin was attenuated by a ferroptosis inducer (methyl (1S,3R)-2-(2-chloroacetyl)-1-(4-methoxycarbonylphenyl)-1,3,4,9-tetrahyyridoindole-3-carboxylate) and an autophagy inhibitor (3-methyladenine). Inhibiting ferroptosis by activating autophagy may be an important mechanism by which rapamycin exerts its neuroprotective effects. Therefore, the regulation of ferroptosis and autophagy may provide a therapeutic target for drug treatments in Parkinson's disease.
Collapse
Affiliation(s)
- Tongyu Liu
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Peihan Wang
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Huan Yin
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiangfei Wang
- Wudang Mountain Hospital Area of Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jing Lv
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jiang Yuan
- Department of Neurology, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jing Zhu
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine; Wudang Mountain Hospital Area of Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yunfu Wang
- Department of Neurology, Affiliated Taihe Hospital; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
41
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
42
|
Ali N, Ferrao K, Mehta KJ. Liver Iron Loading in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1427-1439. [PMID: 36306827 DOI: 10.1016/j.ajpath.2022.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
Alcohol-associated liver disease (ALD) is a common chronic liver disease with increasing incidence worldwide. Alcoholic liver steatosis/steatohepatitis can progress to liver fibrosis/cirrhosis, which can cause predisposition to hepatocellular carcinoma. ALD diagnosis and management are confounded by several challenges. Iron loading is a feature of ALD which can exacerbate alcohol-induced liver injury and promote ALD pathologic progression. Knowledge of the mechanisms that mediate liver iron loading can help identify cellular/molecular targets and thereby aid in designing adjunct diagnostic, prognostic, and therapeutic approaches for ALD. Herein, the cellular mechanisms underlying alcohol-induced liver iron loading are reviewed and how excess iron in patients with ALD can promote liver fibrosis and aggravate disease pathology is discussed. Alcohol-induced increase in hepatic transferrin receptor-1 expression and up-regulation of high iron protein in Kupffer cells (proposed) facilitate iron deposition and retention in the liver. Iron is loaded in both parenchymal and nonparenchymal liver cells. Iron-loaded liver can promote ferroptosis and thereby contribute to ALD pathology. Iron and alcohol can independently elevate oxidative stress. Therefore, a combination of excess iron and alcohol amplifies oxidative stress and accelerates liver injury. Excess iron-stimulated hepatocytes directly or indirectly (through Kupffer cell activation) activate the hepatic stellate cells via secretion of proinflammatory and profibrotic factors. Persistently activated hepatic stellate cells promote liver fibrosis, and thereby facilitate ALD progression.
Collapse
Affiliation(s)
- Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
43
|
Li J, Xian L, Zhu Z, Wang Y, Zhang W, Zheng R, Xue W, Li J. Role of CELF2 in ferroptosis: Potential targets for cancer therapy (Review). Int J Mol Med 2023; 52:88. [PMID: 37594127 PMCID: PMC10500222 DOI: 10.3892/ijmm.2023.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ferroptosis is a novel form of regulated cellular necrosis that plays a critical role in promoting cancer progression and developing drug resistance. The main characteristic of ferroptosis is iron‑dependent lipid peroxidation caused by excess intracellular levels of reactive oxygen species. CUGBP ELAV‑like family number 2 (CELF2) is an RNA‑binding protein that is downregulated in various types of cancer and is associated with poor patient prognoses. CELF2 can directly bind mRNA to a variety of ferroptosis control factors; however, direct evidence of the regulatory role of CELF2 in ferroptosis is currently limited. The aim of the present review was to summarise the findings of previous studies on CELF2 and its role in regulating cellular redox homeostasis. The present review may provide insight into the possible mechanisms through which CELF2 affects ferroptosis and to provide recommendations for future studies.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xian
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zifeng Zhu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Wang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenlei Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wang Xue
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
44
|
Yang T, Yang G, Wang G, Jia D, Xiong B, Lu X, Li Y. Bioinformatics identification and integrative analysis of ferroptosis-related key lncRNAs in patients with osteoarthritis. Biosci Rep 2023; 43:BSR20230255. [PMID: 37702097 PMCID: PMC10500229 DOI: 10.1042/bsr20230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Ferroptosis and dysregulation of long non-coding RNA (lncRNA) have been described to be strictly relevant to the pathogenesis of osteoarthritis (OA). However, the connection between ferroptosis and lncRNA in OA is poorly appreciated. Herein, we investigated the functional contribution of lncRNA markers correlated with the progression of human OA by comprehensive bioinformatics analysis of a panoramic network of competing endogenous RNA (ceRNA) based on ferroptosis-related genes (FRGs). METHODS FRGs-related competing endogenous RNA (ceRNA) networks were generated using differentially expressed genes based on OA-related whole transcriptome data from the Gene Expression Omnibus (GEO) database via starBase, miRTarBase, and miRWalk databases. The pivotal lncRNAs were ascertained by topological features (degree, betweenness, and closeness) and subceRNA networks were re-visualized. The expression difference of pivotal lncRNAs was verified by quantitative real-time polymerase chain reaction (qRT-PCR). The latent molecular mechanisms of the global ceRNA and subceRNA networks were uncovered by the R package clusterProfiler-based enrichment analysis. RESULTS A total of 98 dysregulated lncRNA-miRNA-mRNA regulatory relationships were attained in the FRGs-related panoramic ceRNA network of OA, covering 26 mRNAs, 20 miRNAs, and 20 lncRNAs. Three lncRNAs (AC011511.5, AL358072.1, and C9orf139) were ascertained as the central lncRNAs in the panoramic ceRNA network. Functional ensemble analysis illustrated that both the panoramic ceRNA network and the subceRNA network were integrally affiliated with the immune-inflammatory response, oxygen homeostasis, and cell death (apoptosis, autophagy, and ferroptosis). CONCLUSION Comprehensive bioinformatics analysis of the FRGs-related ceRNA network determined three molecular biomarkers of lncRNAs that might be affiliated with OA progression.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bohan Xiong
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xiaojun Lu
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
45
|
Xie Y, Zhou Y, Wang J, Du L, Ren Y, Liu F. Ferroptosis, autophagy, tumor and immunity. Heliyon 2023; 9:e19799. [PMID: 37810047 PMCID: PMC10559173 DOI: 10.1016/j.heliyon.2023.e19799] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis was first proposed in 2012, a new form of cell death. Autophagy plays a crucial role in cell clearance and maintaining homeostasis. Autophagy is involved in the initial step of ferroptosis under the action of histone elements such as NCOA4, RAB7A, and BECN1. Ferroptosis and autophagy are involved in tumor progression, treatment, and drug resistance in the tumor microenvironment. In this review, we described the mechanisms of ferroptosis, autophagy, and tumor and immunotherapy, respectively, and emphasized the relationship between autophagy-related ferroptosis and tumor.
Collapse
Affiliation(s)
| | | | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuanyuan Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
46
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang J, Chen P, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. J Transl Med 2023; 21:575. [PMID: 37633909 PMCID: PMC10463608 DOI: 10.1186/s12967-023-04432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
47
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
48
|
Wang G, Li J, Zhu L, Zhou Z, Ma Z, Zhang H, Yang Y, Niu Q, Wang X. Identification of hepatocellular carcinoma-related subtypes and development of a prognostic model: a study based on ferritinophagy-related genes. Discov Oncol 2023; 14:147. [PMID: 37555866 PMCID: PMC10412519 DOI: 10.1007/s12672-023-00756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma still has a high incidence and mortality rate worldwide, and further research is needed to investigate its occurrence and development mechanisms in depth in order to identify new therapeutic targets. Ferritinophagy is a type of autophagy and a key factor in ferroptosis that could influence tumor onset and progression. Although, the potential role of ferritinophagy-related genes (FRGs) in liver hepatocellular carcinoma (LIHC) is unknown. METHODS Single-cell RNA sequencing (scRNA-seq) data of LIHC were obtained from the Gene Expression Omnibus (GEO) dataset. In addition, transcriptome and clinical follow-up outcome data of individuals with LIHC were extracted from the The Cancer Genome Atlas (TCGA) dataset. FRGs were collected through the GeneCards database. Differential cell subpopulations were distinguished, and differentially expressed FRGs (DEFRGs) were obtained. Differential expression of FRGs and prognosis were observed according to the TCGA database. An FRG-related risk model was constructed to predict patient prognosis by absolute shrinkage and selection operator (LASSO) and COX regression analyses, and its prognosis predictive power was validated. Ultimately, the association between risk score and tumor microenvironment (TME), immune cell infiltration, immune checkpoints, drug sensitivity, and tumor mutation burden (TMB) was analyzed. We also used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to validate the expression of key genes in normal liver cells and liver cancer cells. RESULTS We ultimately identified 8 cell types, and 7 differentially expressed FRGs genes (ZFP36, NCOA4, FTH1, FTL, TNF, PCBP1, CYB561A3) were found among immune cells, and we found that Monocytes and Macrophages were closely related to FRGs genes. Subsequently, COX regression analysis showed that patients with high expression of FTH1, FTL, and PCBP1 had significantly worse prognosis than those with low expression, and our survival prediction model, constructed based on age, stage, and risk score, showed better prognostic prediction ability. Our risk model based on 3 FRGs genes ultimately revealed significant differences between high-risk and low-risk groups in terms of immune infiltration and immune checkpoint correlation, drug sensitivity, and somatic mutation risk. Finally, we validated the key prognostic genes FTH1, FTL, using qRT-PCR, and found that the expression of FTH1 and FTL was significantly higher in various liver cancer cells than in normal liver cells. At the same time, immunohistochemistry showed that the expression of FTH1, FTL in tumor tissues was significantly higher than that in para-tumor tissues. CONCLUSION This study identifies a considerable impact of FRGs on immunity and prognosis in individuals with LIHC. The collective findings of this research provide new ideas for personalized treatment of LIHC and a more targeted therapy approach for individuals with LIHC to improve their prognosis.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Lingkang Zhu
- Jing'an District Central Hospital, Fudan University, Shanghai, 200040, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Yulong Yang
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Qiang Niu
- Department of General Surgery, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Yangpu District, Shanghai, 200438, China.
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, Zhao T, Chen W, Liu X, Di C, Li Q. Ferroptosis: a novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol 2023; 12:65. [PMID: 37501213 PMCID: PMC10375783 DOI: 10.1186/s40164-023-00427-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a regulated cell death mode triggered by iron-dependent toxic membrane lipid peroxidation. As a novel cell death modality that is morphologically and mechanistically different from other forms of cell death, such as apoptosis and necrosis, ferroptosis has attracted extensive attention due to its association with various diseases. Evidence on ferroptosis as a potential therapeutic strategy has accumulated with the rapid growth of research on targeting ferroptosis for tumor suppression in recent years. METHODS We summarize the currently known characteristics and major regulatory mechanisms of ferroptosis and present the role of ferroptosis in cellular stress responses, including ER stress and autophagy. Furthermore, we elucidate the potential applications of ferroptosis in radiotherapy and immunotherapy, which will be beneficial in exploring new strategies for clinical tumor treatment. RESULT AND CONCLUSION Based on specific biomarkers and precise patient-specific assessment, targeting ferroptosis has great potential to be translated into practical new approaches for clinical cancer therapy, significantly contributing to the prevention, diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Xiaogang Zheng
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ye
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongxiong Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyi Yu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Chen
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguo Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuixia Di
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Li
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|