1
|
de Souza CC, Glória JC, da Silva ERD, de Lima Guerra Corado A, de Alcântara KÁG, Cordeiro IB, de Andrade EV, Mariúba LAM. Single-Stranded Variable Fragment Gene Libraries Built for Phage Display: An Updated Review of Design, Selection and Application. J Microbiol Biotechnol 2024; 35:e2407049. [PMID: 39631781 PMCID: PMC11813352 DOI: 10.4014/jmb.2407.07049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024]
Abstract
The development of the phage display technique has brought practicality and speed when selecting high-affinity molecules. It is used to obtain single-chain variable fragments (scFvs) and has revolutionized several branches of research and industry. These are developed from gene libraries that differ in their construction strategies, which causes a diversity of sequences, specificity and binding strength of the projected molecule to its antigen. In this review, we present the recent studies that demonstrate methods and approaches using immune, naïve, synthetic and semi-synthetic libraries to construct and select scFvs. Subsequently, the characteristics of these libraries, the functionality of the scFvs and the cost-benefits of production will be discussed. In addition, we highlight the methodological trends and challenges to be overcome in order to optimize the production and application of these antibody fragments.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Juliane Corrêa Glória
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Eliza Raquel Duarte da Silva
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Universidade Nilton Lins, Manaus, AM, Brazil
| | - Kelson Ávila Graça de Alcântara
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Faculdade Estácio do Amazonas, Manaus, AM, Brazil
| | - Isabelle Bezerra Cordeiro
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Edmar Vaz de Andrade
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
2
|
Kazemzadeh H, Bagheri M, Sepehri M, Ebrahimi E, Wang H, Haider S, Kheirabadi M, Tohidkia MR. Isolation and Characterization of the Vascular Endothelial Growth Factor Receptor Targeting ScFv Antibody Fragments Derived from Phage Display Technology. ACS OMEGA 2024; 9:21964-21973. [PMID: 38799304 PMCID: PMC11112697 DOI: 10.1021/acsomega.3c10158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis, as a tumor hallmark, plays an important role in the growth and development of the tumor vasculature system. There is a huge amount of evidence suggesting that the vascular endothelial growth factor receptor (VEGFR-2)/VEGF-A axis is one of the main contributors to tumor angiogenesis and metastasis. Thus, inhibition of the VEGFR-2 signaling pathway by anti-VEGFR-2 mAb can retard tumor growth. In this study, we employ phage display technology and solution-phase biopanning (SPB) to isolate specific single-chain variable fragments (scFvs) against VEGFR-2 and report on the receptor binding characteristics of the candidate scFvs A semisynthetic phage antibody library to isolate anti-VEGFR-2 scFvs through an SPB performed with decreasing concentrations of the VEGFR-2-His tag and VEGFR-2-biotin. After successful expression and purification, the specificity of the selected scFv clones was further analyzed by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunoblotting. The competition assay was undertaken to identify the VEGFR-2 receptor-blocking properties of the scFvs. Furthermore, the molecular binding characteristics of candidate scFvs were extensively studied by peptide-protein docking. Polyclonal ELISA analysis subsequent to four rounds of biopanning showed a significant enrichment of VEGFR-2-specific phage clones by increasing positive signals from the first round toward the fourth round of selection. The individual VEGFR-2-reactive scFv phage clones were identified by monoclonal phage ELISA. The sequence analysis and complementarity-determining region alignment identified the four unique anti-VEGFR-2-scFv clones. The soluble and purified scFvs displayed binding activity against soluble and cell-associated forms of VEGFR-2 protein in the ELISA and flow cytometry assays. Based on the inference from the molecular docking results, scFvs D3, E1, H1, and E9 recognized domains 2 and 3 on the VEGFR-2 protein and displayed competition with VEGF-A for binding to VEGFR-2. The competition assay confirmed that scFvs H1 and D3 can block the VEGFR-2/VEGF-A interaction. In conclusion, we identified novel VEGFR-2-blocking scFvs that perhaps exhibit the potential for angiogenesis inhibition in VEGFR-2-overexpressed tumor cells.
Collapse
Affiliation(s)
- Hamid Kazemzadeh
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mahsima Bagheri
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Maryam Sepehri
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Elham Ebrahimi
- Basic
Science Department, Faculty of Biology, Hakim Sabzevari University, P.O. Box 96179-76487, Sabzevar 571, Iran
| | - Huan Wang
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Shozeb Haider
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Mitra Kheirabadi
- Basic
Science Department, Faculty of Biology, Hakim Sabzevari University, P.O. Box 96179-76487, Sabzevar 571, Iran
| | - Mohammad Reza Tohidkia
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| |
Collapse
|
3
|
Zhang A, Zou X, Yang S, Yang H, Ma Z, Li J. Effect of NETs/COX-2 pathway on immune microenvironment and metastasis in gastric cancer. Front Immunol 2023; 14:1177604. [PMID: 37153547 PMCID: PMC10156975 DOI: 10.3389/fimmu.2023.1177604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Neutrophil extracellular traps (NETs) are crucial in the progression of several cancers. The formation of NETs is closely related to reactive oxygen species (ROS), and the granule proteins involved in nucleosome depolymerization under the action of ROS together with the loosened DNA compose the basic structure of NETs. This study aims to investigate the specific mechanisms of NETs promoting gastric cancer metastasis in order to perfect the existing immunotherapy strategies. Methods In this study, the cells and tumor tissues of gastric cancer were detected by immunological experiments, real-time polymerase chain reaction and cytology experiments. Besides, bioinformatics analysis was used to analyze the correlation between cyclooxygenase-2 (COX-2) and the immune microenvironment of gastric cancer, as well as its effect on immunotherapy. Results Examination of clinical specimens showed that NETs were deposited in tumor tissues of patients with gastric cancer and their expression was significantly correlated with tumor staging. Bioinformatics analysis showed that COX-2 was involved in gastric cancer progression and was associated with immune cell infiltration as well as immunotherapy. In vitro experiments, we demonstrated that NETs could activate COX-2 through Toll-like receptor 2 (TLR2) and thus enhance the metastatic ability of gastric cancer cells. In addition, in a liver metastasis model of nude mice we also demonstrated the critical role of NETs and COX-2 in the distant metastasis of gastric cancer. Conclusion NETs can promote gastric cancer metastasis by initiating COX-2 through TLR2, and COX-2 may become a target for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Ange Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiaoming Zou,
| | - Shifeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhen Ma
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
4
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
5
|
Development of a human phage display-derived anti-PD-1 scFv antibody: an attractive tool for immune checkpoint therapy. BMC Biotechnol 2022; 22:22. [PMID: 35996120 PMCID: PMC9396865 DOI: 10.1186/s12896-022-00752-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background The PD-1 checkpoint pathway plays a major role in tumor immune evasion and the development of the tumor microenvironment. Clinical studies show that therapeutic antibodies blocking the PD-1 pathway can restore anti-tumor or anti-virus immune responses by the reinvigoration of exhausted T cells. Because of the promising results of anti-PD-1 monoclonal antibodies in cancer treatment, autoimmune disorders, and infectious diseases, the PD-1 has emerged as an encouraging target for different diseases. Results In the present study, we employed a human semi-synthetic phage library for isolation of some scFvs against the extracellular domain of PD-1 protein by panning process. After the panning, a novel anti-PD-1 scFv (SS107) was found that exhibited specific binding to PD-1 antigen and stimulated Jurkat T cells. The selected anti-PD-1 scFv could restore the production of IL-2 and IFN-γ by Jurkat T cells that were co-cultured with PD-L1 positive tumor cells. Conclusion This anti-PD-1 scFv with high specificity and the ability to reactivate exhausted T cells has the potential to be developed as an anti-cancer agent or to be used in combination with other therapeutic approaches.
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00752-8.
Collapse
|
6
|
Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M, Omidian H, Omidi Y. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochim Acta 2022; 189:252. [PMID: 35687204 DOI: 10.1007/s00604-022-05316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v) portability with simplicity in application and disposability. Label-free MESDs can serve an affordable real-time detection with a simple analysis in a short processing time, providing point-of-care diagnosis/detection possibilities in precision medicine, and environmental analysis. In the current review, we elaborate on label-free microfluidic biosensors, provide comprehensive insights into electrochemical detection techniques, and discuss the principles of label-free microfluidic-based sensing approaches.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
7
|
Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 2022; 207:592-610. [PMID: 35296439 DOI: 10.1016/j.ijbiomac.2022.03.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e., antibody-toxin conjugates, antibody-drug conjugates, and antibody-radionuclide conjugates), and antibody fragments, mostly target tumor cells. However, due to intrinsic heterogeneity of cancer diseases, tumor cells targeting mAb have been encountered with difficulties in their unpredictable efficacy as well as variability in remission and durable clinical benefits among cancer patients. To address these pitfalls, the area has undergone two major evolutions with the intent of minimizing anti-drug responses and addressing limitations experienced with tumor cell-targeted therapies. As a novel hallmark of cancer, the tumor microenvironment (TME) is becoming the great importance of attention to develop innovative strategies based on therapeutic mAbs. Here, we underscore innovative strategies targeting TME by mAbs which destroy tumor cells indirectly through targeting vasculature system (e.g., anti-angiogenesis), immune system modulation (i.e., stimulation, suppression, and depletion), the targeting and blocking of stroma-based growth signals (e.g., cancer-associated fibroblasts), and targeting cancer stem cells, as well as, their effector mechanisms, clinical uses, and relevant mechanisms of resistance.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Haghighi
- Yazd Diabetes Research Center, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Kreiter
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Fattahi Z, Tohidkia MR, Yari Khosroushahi A. Phage display-derived immunorecognition elements LSPR nanobiosensor for peptide hormone glycine-extended gastrin 17 detection. Mikrochim Acta 2022; 189:48. [PMID: 34988639 DOI: 10.1007/s00604-021-05159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
The current study intended to evaluate two types of biorecognition element (BRE), namely recombinant antibody fragments and M13 bacteriophage-displayed antibody fragments, where protein L and electrostatic interactions were used to respectively conjugated antibodies and bacteriophages on AuNPs. The functionalization process was examined by DLS to monitor the changes in the size and zeta potential. The formation of the BRE-G17-Gly immunological complexes was manifested by aggregation (confirmed by FE-SEM) and color change from red to dark blue visible to the naked eye. Local refractive index variations of functionalized AuNPs were monitored by a UV - vis spectrophotometer, showing increasing size and decreasing zeta potential in all stages. The calibration plot was developed in the concentration range 1-5 µg/mL and the limit of detection (LOD) was 1 µg/mL. The LSRP nanobiosensor in combination with the phage-based BRE was an affordable and simple approach, as it was able to eliminate the time-consuming and costly step of extracting antibodies. Contrary to the traditional immunoassays, this method does not require additional amplification, e.g., enzymatic, to read the result. The proposed LSPR nanobiosensor model can be adapted to detect a wide range of pathogens, viruses, and biomarkers in the shortest possible time.
Collapse
Affiliation(s)
- Zahra Fattahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Research and Development Complex, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Aghdam MA, Tohidkia MR, Ghamghami E, Ahmadikhah A, Khanmahamadi M, Baradaran B, Mokhtarzadeh A. Implementation of a Design of Experiments to Improve Periplasmic Yield of Functional ScFv Antibodies in a Phage Display Platform. Adv Pharm Bull 2021; 12:583-592. [PMID: 35935041 PMCID: PMC9348535 DOI: 10.34172/apb.2022.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Production of functional recombinant antibody fragments in the periplasm of E. coli is a prerequisite step to achieve sufficient reagent for preclinical studies. Thus, the cost-effective and lab-scale production of antibody fragments demands the optimization of culture conditions.
Methods: The culture conditions such as temperature, optical density (OD600) at induction, induction time, and IPTG concentration were investigated to optimize the functional expression of a phage-derived scFv molecule using a design of experiment (DoE). Additionally, the effects of different culture media and osmolyte supplements on the expression yield of scFv were examined.
Results: The developed 2FI regression model indicated the significant linear effect of the incubation temperature, the induction time, and the induction OD600 on the expression yield of functional scFv. Besides, the statistical analysis indicated that two significant interactions of the temperature/induction time and the temperature/induction OD600 significantly interplay to increase the yield. Further optimization showed that the expression level of functional scFv was the most optimal when the cultivation was undertaken either in the TB medium or in the presence of media supplements of 0.5 M sorbitol or 100 mM glycine betaine.
Conclusion: In the present study, for the first time, we successfully implemented DoE to comprehensively optimize the culture conditions for the expression of scFv molecules in a phage antibody display setting, where scFv molecules can be isolated from a tailor-made phage antibody library known as "Human Single Fold scFv Library I."
Collapse
Affiliation(s)
- Marjan Abri Aghdam
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghamghami
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Asadollah Ahmadikhah
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C Velenjak, Tehran, Iran
| | - Morteza Khanmahamadi
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Trop 2021; 218:105883. [PMID: 33676937 DOI: 10.1016/j.actatropica.2021.105883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Vaccination against dog-sheep transmission cycle is necessary to control cystic echinococcosis (CE) infection. A multi-epitope multi-antigenic recombinant vaccine was developed-comprising the three putative vaccine antigens EG95, Eg14-3-3 and EgEnolase-was cloned and expressed. In a pilot experiment, the multi-antigen vaccine was assessed in 15 dogs and 15 sheep (five experimental groups and three animals in each group) by two subcutaneous doses 28 days apart. To evaluate the efficacy of the vaccine candidate first immunological analysis were done comprising IgG and IgE antibodies and the cytokine IL-4 in sera of the immunized dogs and sheep. Serum IgG, IgE, and IL-4, in particular in the dogs, were increased after the two rounds of vaccine candidate injection, while the total number of hydatid cysts was reduced (~85.43%). This pilot trial indicated significant immune protection efficacy against E. granulosus especially in dogs, while its efficacy in sheep was not as high as dogs. The multi-antigenic candidate vaccine is proposed as a protective vaccine modality in both dogs and sheep.
Collapse
|
11
|
Pyruvate dehydrogenase complex-enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies. Sci Rep 2020; 10:15267. [PMID: 32943681 PMCID: PMC7498459 DOI: 10.1038/s41598-020-72159-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex—enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS). Immunoblot and fluorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35–100.0%) and specificity (CI 78.20–100.0%), confirming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specific antibodies against it offer new opportunities to improve the detection of Listeria.
Collapse
|
12
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory. Biotechnol Adv 2020; 40:107499. [DOI: 10.1016/j.biotechadv.2019.107499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
14
|
Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. Int J Mol Sci 2020; 21:ijms21020515. [PMID: 31947597 PMCID: PMC7014258 DOI: 10.3390/ijms21020515] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Oncology immunotherapy has been a significant advancement in cancer treatment and involves harnessing and redirecting a patient’s immune response towards their own tumour. Specific recognition and elimination of tumour cells was first proposed over a century ago with Paul Erlich’s ‘magic bullet’ theory of therapy. In the past decades, targeting cancer antigens by redirecting T cells with antibodies using either bispecific T cell engagers (BiTEs) or chimeric antigen receptor (CAR) T cell therapy has achieved impressive clinical responses. Despite recent successes in haematological cancers, linked to a high and uniformly expressed CD19 antigen, the efficacy of T cell therapies in solid cancers has been disappointing, in part due to antigen escape. Targeting heterogeneous solid tumours with T cell therapies will require the identification of novel tumour specific targets. These targets can be found among a range of cell-surface expressed antigens, including proteins, glycolipids or carbohydrates. In this review, we will introduce the current tumour target antigen classification, outline existing approaches to discover novel tumour target antigens and discuss considerations for future design of antibodies with a focus on their use in CAR T cells.
Collapse
|
15
|
Molecular Docking and Molecular Dynamics (MD) Simulation of Human Anti-Complement Factor H (CFH) Antibody Ab42 and CFH Polypeptide. Int J Mol Sci 2019; 20:ijms20102568. [PMID: 31130605 PMCID: PMC6566401 DOI: 10.3390/ijms20102568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the interaction between the antibody and its targeted antigen and knowing of the epitopes are critical for the development of monoclonal antibody drugs. Complement factor H (CFH) is implied to play a role in tumor growth and metastasis. An autoantibody to CHF is associated with anti-tumor cell activity. The interaction of a human monoclonal antibody Ab42 that was isolated from a cancer patient with CFH polypeptide (pCFH) antigen was analyzed by molecular docking, molecular dynamics (MD) simulation, free energy calculation, and computational alanine scanning (CAS). Experimental alanine scanning (EAS) was then carried out to verify the results of the theoretical calculation. Our results demonstrated that the Ab42 antibody interacts with pCFH by hydrogen bonds through the Tyr315, Ser100, Gly33, and Tyr53 residues on the complementarity-determining regions (CDRs), respectively, with the amino acid residues of Pro441, Ile442, Asp443, Asn444, Ile447, and Thr448 on the pCFH antigen. In conclusion, this study has explored the mechanism of interaction between Ab42 antibody and its targeted antigen by both theoretical and experimental analysis. Our results have important theoretical significance for the design and development of relevant antibody drugs.
Collapse
|
16
|
Jafari B, Pourseif MM, Barar J, Rafi MA, Omidi Y. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv 2019; 16:583-605. [DOI: 10.1080/17425247.2019.1614911] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia,
Iran
| | - Mohammad M. Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Mohammad A. Rafi
- Department of Neurology, College of Medicine, Thomas Jefferson University, Philadelphia,
PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| |
Collapse
|