1
|
Wan G, Gu L, Chen Y, Wang Y, Sun Y, Li Z, Ma W, Bao X, Wang R. Nanobiotechnologies for stroke treatment. Nanomedicine (Lond) 2025:1-21. [PMID: 40327588 DOI: 10.1080/17435889.2025.2501514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Stroke has brought about a poor quality of life for patients and a substantial societal burden with high morbidity and mortality. Thus, the efficient stroke treatment has always been the hot topic in the research of medicine. In the past decades, nanobiotechnologies, including natural exosomes and artificial nanomaterials, have been a focus of attention for stroke treatment due to their inherent advantages, such as facile blood - brain barrier traversal and high drug encapsulation efficiency. Recently, thanks to the rapid development of nanobiotechnologies, more and more efforts have been made to study the therapeutic effects of exosomes and artificial nanomaterials as well as relevant mechanisms in stroke treatment. Herein, from recent studies and articles, the application of natural exosomes and artificial nanomaterials in stroke treatment are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiqing Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenwei Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Filipczak N, Rajmalani BA, Ataide JA, Yalamarty SSK, Luther E, Torchilin VP. Disulfiram-containing polymeric nanocapsules with anticancer activity for cancer treatment. Int J Pharm 2025; 669:125059. [PMID: 39662857 DOI: 10.1016/j.ijpharm.2024.125059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Disulfiram, a medication traditionally used to treat alcohol addiction, has gained attention as a potential cancer treatment in recent years. Disulfiram works by inhibiting the enzyme aldehyde dehydrogenase, involved in the breakdown of acetaldehyde, a by-product of alcohol metabolism. This results in the build up of acetaldehyde in the body leading to unpleasant side effects such as nausea and vomiting when alcohol is consumed while taking the drug. With cancer treatment, disulfiram has been found to have several mechanisms of action. It has been shown to inhibit cancer cell growth and metastasis and to induce apoptosis in cancer cells. Additionally, disulfiram has been found to sensitize cancer cells to other treatments, including chemotherapy and radiation therapy, by increasing their susceptibility to these treatments. Disulfiram treatment is effective against a variety of cancers, including breast cancer, prostate cancer, and glioblastoma. Overall, disulfiram holds promise as a potentially effective and inexpensive cancer treatment. Thus, researchers are exploring various delivery systems for disulfiram in cancer treatment to improve its effectiveness and reduce its side effects. Among delivery systems nanoparticles and liposomes have been used to deliver disulfiram. Our study demonstrates the efficacy of polycaprolactone-based nanocapsules for encapsulating DSF, maintaining stable size distribution (∼250 nm) and long-term stability. These nanocapsules exhibit sustained, controlled DSF release, effectively addressing the drug's instability in the bloodstream and showing promising therapeutic potential. Notably, DSF-loaded nanocapsules exhibited a twofold increase in cytotoxicity against certain tumors compared to free DSF, attributed to their extended-release profile. These findings highlight the potential of nanocapsules to improve therapeutic efficacy while reducing side effects.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Janaina Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Huang D, Yao Y, Lou Y, Kou L, Yao Q, Chen R. Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategies. Int J Pharm X 2024; 8:100307. [PMID: 39678262 PMCID: PMC11638648 DOI: 10.1016/j.ijpx.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The initial focus of the clinical application of disulfiram was its efficacy in treating alcoholism. However, recent research has revealed its potential as an anti-tumor agent and even as an enhancer of cancer immunotherapy. Disulfiram has received safety approval from the FDA, indicating its safety advantages over other substances used for disease treatment. Although clinical trials have been conducted on strategies involving disulfiram or its combination with other anti-tumor drugs, the treatment outcomes have not yielded satisfactory results, thereby emphasizing the significance of addressing drug delivery as a crucial challenge to be resolved. The need to explore advanced nano-delivery systems and the potential immunotherapy enhancement effect of disulfiram in cancer treatment has increased. This review highlights various ways in which disulfiram can combat cancer and importantly, activate immune-related mechanisms. It also discusses obstacles related to delivering disulfiram and provides existing solutions in terms of drug delivery. These drug delivery strategies offer solutions to address various challenges encountered in diverse delivery methods and aim to achieve enhanced therapeutic effects. The focus is on recent advancements in disulfiram delivery strategies and the future potential of disulfiram in immune regulation.
Collapse
Affiliation(s)
- Di Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinsha Yao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yifei Lou
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Long Y, Xu Z, Yu J, Hu X, Xie Y, Duan X, Li N, Yan Y, Wang Y, Qin J. Targeting xCT with sulfasalazine suppresses triple-negative breast cancer growth via inducing autophagy and coordinating cell cycle and proliferation. Anticancer Drugs 2024; 35:830-843. [PMID: 39016262 DOI: 10.1097/cad.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
There is a substantial unmet need for effective treatment strategies in triple-negative breast cancer (TNBC). Recently, renewed attention has been directed towards targeting glutamine (Gln) metabolism to enhance the efficacy of cancer treatment. Nonetheless, a comprehensive exploration into the mechanistic implications of targeting Gln metabolism in TNBC is lacking. In this study, our objective was to probe the sensitivity of TNBC to alterations in Gln metabolism, using representative TNBC cell lines: MDA-MB-231, MDA-MB-468, and 4T1. Through an integration of bioinformatics, in-vitro, and in-vivo investigations, we demonstrated that sulfasalazine (SAS), like erastin (a known xCT inhibitor), effectively suppressed the expression and transport function of xCT, resulting in a depletion of glutathione levels in MDA-MB-231 and MDA-MB-468 cells. Furthermore, both xCT knockdown and SAS treatment demonstrated the promotion of cellular autophagy. We unveiled a positive correlation between xCT and the autophagy-related molecule p62, their co-expression indicating poor survival outcomes in breast cancer patients. In addition, our research revealed the influence of SAS and xCT on the expression of proteins regulating cell cycle and proliferation. Treatment with SAS or xCT knockdown led to the inhibition of MYC, CDK1, and CD44 expression. Significantly, the combined administration of SAS and rapamycin exhibited a synergistic inhibitory effect on the growth of transplanted breast tumor in mouse models constructed from murine-derived 4T1 cells. Taken together, our findings suggested the potential and clinical relevance of the SAS and rapamycin combination in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaping Long
- Department of Immunology, School of Medicine, Nankai University
| | - Zizheng Xu
- Department of Immunology, School of Medicine, Nankai University
| | - Jing Yu
- Department of Immunology, School of Medicine, Nankai University
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University
| | - Yu Xie
- Department of Immunology, School of Medicine, Nankai University
| | - Xianxian Duan
- Department of Immunology, School of Medicine, Nankai University
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University
| |
Collapse
|
5
|
Shen X, Sheng H, Zhang Y, Dong X, Kou L, Yao Q, Zhao X. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int J Pharm X 2024; 7:100248. [PMID: 38689600 PMCID: PMC11059435 DOI: 10.1016/j.ijpx.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.
Collapse
Affiliation(s)
- Xinyue Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huixiang Sheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qing Yao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Xinyu Zhao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Benkő BM, Tóth G, Moldvai D, Kádár S, Szabó E, Szabó ZI, Kraszni M, Szente L, Fiser B, Sebestyén A, Zelkó R, Sebe I. Cyclodextrin encapsulation enabling the anticancer repositioning of disulfiram: Preparation, analytical and in vitro biological characterization of the inclusion complexes. Int J Pharm 2024; 657:124187. [PMID: 38697585 DOI: 10.1016/j.ijpharm.2024.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-β-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-β-cyclodextrin, randomly methylated-β-cyclodextrin and sulfobutylether-β-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Dorottya Moldvai
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Szabina Kádár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Str. 38, Târgu Mureș 540142, Romania.
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest 1097, Hungary.
| | - Béla Fiser
- Institute of Chemistry, Faculty of Materials Science and Chemical Engineering, University of Miskolc, Egyetemváros, Miskolc 3515, Hungary; Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland; Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine.
| | - Anna Sebestyén
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Egis Pharmaceuticals Plc., R&D Directorate, P.O. Box 100, Budapest 1475, Hungary.
| |
Collapse
|
7
|
Tian Y, Chen L, He M, Du H, Qiu X, Lai X, Bao S, Jiang W, Ren J, Zhang A. Repurposing Disulfiram to Combat Acute Respiratory Distress Syndrome with Targeted Delivery by LET-Functionalized Nanoplatforms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12244-12262. [PMID: 38421312 DOI: 10.1021/acsami.3c17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious respiratory condition characterized by a damaged pulmonary endothelial barrier that causes protein-rich lung edema, an influx of proinflammatory cells, and treatment-resistant hypoxemia. Damage to pulmonary endothelial cells and inflammation are pivotal in ARDS development with a key role played by endothelial cell pyroptosis. Disulfiram (DSF), a drug that has long been used to treat alcohol addiction, has recently been identified as a potent inhibitor of gasdermin D (GSDMD)-induced pore formation and can thus prevent pyroptosis and inflammatory cytokine release. These findings indicate that DSF is a promising treatment for inflammatory disorders. However, addressing the challenge posed by its intrinsic physicochemical properties, which hinder intravenous administration, and effective delivery to pulmonary vascular endothelial cells are crucial. Herein, we used biocompatible liposomes incorporating a lung endothelial cell-targeted peptide (CGSPGWVRC) to produce DSF-loaded nanoparticles (DTP-LET@DSF NPs) for targeted delivery and reactive oxygen species-responsive release facilitated by the inclusion of thioketal (TK) within the liposomal structure. After intravenous administration, DTP-LET@DSF NPs exhibited excellent cytocompatibility and minor systemic toxicity, effectively inhibited pyroptosis, mitigated lipopolysaccharide (LPS)-induced ARDS, and prevented cytokine storms resulting from excessive immune reactions in ARDS mice. This study presents a straightforward nanoplatform for ARDS treatment that potentially paves the way for the clinical use of this nanomedicine.
Collapse
Affiliation(s)
- Yu Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ming He
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Hu Du
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinwu Lai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Suya Bao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Weixi Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - An Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
8
|
Liu X, Luo B, Wu X, Tang Z. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189013. [PMID: 37918452 DOI: 10.1016/j.bbcan.2023.189013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, and thus, it is important to enhance its treatment efficacy [1]. Copper has emerged as a critical trace element that affects various intracellular signaling pathways, gene expression, and biological metabolic processes [2], thereby playing a crucial role in the pathogenesis of breast cancer. Recent studies have identified cuproptosis, a newly discovered type of cell death, as an emerging therapeutic target for breast cancer treatment, thereby offering new hope for breast cancer patients. Tsvetkov's research has elucidated the mechanism of cuproptosis and uncovered the critical genes involved in its regulation [3]. Manipulating the expression of these genes could potentially serve as a promising therapeutic strategy for breast cancer treatment. Additionally, using copper ionophores and copper complexes combined with nanomaterials to induce cuproptosis may provide a potential approach to eliminating drug-resistant breast cancer cells, thus improving the therapeutic efficacy of chemotherapy, radiotherapy, and immunotherapy and eventually eradicating breast tumors. This review aims to highlight the practical significance of cuproptosis-related genes and the induction of cuproptosis in the clinical diagnosis and treatment of breast cancer. We examine the potential of cuproptosis as a novel therapeutic target for breast cancer, and we explore the present challenges and limitations of this approach. Our objective is to provide innovative ideas and references for the development of breast cancer treatment strategies based on cuproptosis.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China.
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Yang S, Song Y, Hu Y, Chen H, Yang D, Song X. Multifaceted Roles of Copper Ions in Anticancer Nanomedicine. Adv Healthc Mater 2023; 12:e2300410. [PMID: 37027332 DOI: 10.1002/adhm.202300410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The significantly increased copper level in tumor tissues and serum indicates the close association of copper ions with tumor development, making copper ions attractive targets in the development of novel tumor treatment methods. The advanced nanotechnology developed in the past decades provides great potential for tumor therapy, among which Cu-based nanotherapeutic systems have received greater attention. Herein, the multifaceted roles of copper ions in cancer progression are summarized and the recent advances in the copper-based nanostructures or nanomedicines for different kinds of tumor therapies including copper depletion therapy, copper-based cytotoxins, copper-ion-based chemodynamic therapy and its combination with other treatments, and copper-ion-induced ferroptosis and cuproptosis activation are discussed. Furthermore, the perspectives for the further development of copper-ion-based nanomedicines for tumor therapy and clinic translation are presented by the authors.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Yanling Hu
- Nanjing Polytechnic Institute, 210048, Nanjing, China
| | - HongJin Chen
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| |
Collapse
|
10
|
Bagherpoor AJ, Shameem M, Luo X, Seelig D, Kassie F. Inhibition of lung adenocarcinoma by combinations of sulfasalazine (SAS) and disulfiram-copper (DSF-Cu) in cell line models and mice. Carcinogenesis 2023; 44:291-303. [PMID: 37053033 PMCID: PMC10290516 DOI: 10.1093/carcin/bgad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023] Open
Abstract
Sulfasalazine (SAS) is a repurposed antitumor drug which inhibits the proliferation and survival of cancer cells by inhibiting the xCT cellular antioxidant system. Recent clinical studies have shown that, due to poor bioavailability, the antitumor effects of SAS monotherapy are minimal. Therefore, we hypothesized that DSF, another repurposed drug that has demonstrated anticancer effects, or its complex with copper (DSF-copper, DSF-Cu) could potentiate the antilung cancer effects of SAS. Exposure of non-small cell lung cancer cells to therapeutically achievable concentrations of SAS-induced low-to-moderate cytotoxic effects (20-40% reduction in cell viability) and, unexpectedly, induced the antioxidant protein NRF2 and its downstream effectors xCT and ALDH1A1. However, combinations of SAS and DSF-Cu, but not SAS and DSF, induced a significantly higher cytotoxic effect (64-88% reduction in cell viability), apoptosis and generation of mitochondrial reactive oxygen species as compared with SAS or DSF-Cu alone. Moreover, DSF-Cu abrogated SAS-induced NRF2, xCT and ALDH1A1 expression. In a mouse model of lung tumor, SAS + DSF-Cu showed a higher efficacy than the individual drugs in reducing the number and size of tumors as well as the incidence and multiplicity of lung adenocarcinoma. Taken together, our findings indicate that the observed antilung cancer effects of SAS plus DSF-Cu are mediated, at least in part, via impairment of reactive oxygen species defense and -enhancement of oxidative stress and provide evidence for the preventive/therapeutic potential of this combinatorial approach against lung cancer.
Collapse
Affiliation(s)
| | | | - Xianghua Luo
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Division of Biostatistics, School of Public Health, Minneapolis, MN 55455, USA
| | - Davis Seelig
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Fekadu Kassie
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Benkő BM, Lamprou DA, Sebestyén A, Zelkó R, Sebe I. Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opin Drug Deliv 2023; 20:541-557. [PMID: 36922013 DOI: 10.1080/17425247.2023.2190581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Tumour Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Swetha KL, Paul M, Maravajjala KS, Kumbham S, Biswas S, Roy A. Overcoming drug resistance with a docetaxel and disulfiram loaded pH-sensitive nanoparticle. J Control Release 2023; 356:93-114. [PMID: 36841286 DOI: 10.1016/j.jconrel.2023.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Previous studies have demonstrated that breast cancer cells deploy a myriad array of strategies to thwart the activity of anticancer drugs like docetaxel (DTX), including acquired drug resistance due to overexpression of drug-efflux pumps like P-glycoprotein (P-gp) and innate drug resistance by cancer stem cells (CSCs). As disulfiram (DSF) can inhibit both P-gp and CSCs, we hypothesized that co-treatment of DTX and DSF could sensitize the drug-resistant breast cancer cells. To deliver a fixed dose ratio of DTX and DSF targeted to the tumor, a tumor extracellular pH-responsive nanoparticle (NP) was developed using a histidine-conjugated star-shaped PLGA with TPGS surface decoration ([DD]NpH-T). By releasing the encapsulated drugs in the tumor microenvironment, pH-sensitive NPs can overcome the tumor stroma-based resistance against nanomedicines. In in-vitro studies, [DD]NpH-T exhibited increased drug release at pH 6.8, improved penetration in a 3D tumor spheroid, reduced serum protein adsorption, and enhanced cytotoxic efficacy against both innate and acquired DTX-resistant breast cancer cells. In in-vivo studies, a significant increase in plasma AUC and tumor drug delivery was observed with [DD]NpH-T, which resulted in an enhanced in-vivo anti-tumor efficacy against a mouse orthotopic breast cancer, with a significantly increased intratumoral ROS and apoptosis, while decreasing P-gp expression and prevention of lung metastasis. Altogether, the current study demonstrated that the DTX and DSF combination could effectively target multiple drug-resistance pathways in-vitro, and the in-vivo delivery of this drug combination using TPGS-decorated pH-sensitive NPs could increase tumor accumulation, resulting in improved anti-tumor efficacy.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Soniya Kumbham
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
14
|
Chen J, Tan X, Huang Y, Xu C, Zeng Z, Shan T, Guan Z, Xu X, Huang Z, Zhao C. Reactive oxygen species-activated self-amplifying prodrug nanoagent for tumor-specific Cu-chelate chemotherapy and cascaded photodynamic therapy. Biomaterials 2022; 284:121513. [DOI: 10.1016/j.biomaterials.2022.121513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
|
15
|
Aldehyde Dehydrogenase 2 Family Member (ALDH2) Is a Therapeutic Index for Oxaliplatin Response on Colorectal Cancer Therapy with Dysfunction p53. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1322788. [PMID: 35178443 PMCID: PMC8844434 DOI: 10.1155/2022/1322788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Oxaliplatin resistance is a major issue in the treatment of p53 mutant colorectal cancer (CRC). Finding the specific biomarkers would improve therapeutic efficacy of patients with CRC. In order to figure out the biomarker for CRC patients with mutant p53 access oxaliplatin, a Gene Expression Omnibus dataset (GSE42387) was used to determine differentially expressed genes (DEGs). The Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software were used to predict protein-protein interactions. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to group the DEGs into their common pathways. 138 DEGs were identified with 46 upregulated and 92 downregulated. In the PPI networks, 7 of the upregulated genes and 13 of the downregulated genes were identified as hub genes (high degrees). Four hub genes, aldehyde dehydrogenase 2 family member (ALDH2), aldo-keto reductase family 1 member B1 (AKR1B1), aldo-keto reductase family 1 member B10 (AKR1B10), and monoglyceride lipase (MGLL) were enriched in the most significant pathway, glycerolipid metabolism. Further, we found that low expression of ALDH2 is correlated with poor overall survival and oxaliplatin resistance. Finally, we found that combined treatment with ALDH2 inhibitor and oxaliplatin will reduce the sensitivity to oxaliplatin in p53 mutant HT29 cells. In conclusion, we demonstrate that ALDH2 may be a biomarker for oxaliplatin resistance status in CRC patients and bring new insight into treatment strategy for p53 mutant CRC patients.
Collapse
|
16
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
18
|
Zirjacks L, Stransky N, Klumpp L, Prause L, Eckert F, Zips D, Schleicher S, Handgretinger R, Huber SM, Ganser K. Repurposing Disulfiram for Targeting of Glioblastoma Stem Cells: An In Vitro Study. Biomolecules 2021; 11:1561. [PMID: 34827559 PMCID: PMC8615869 DOI: 10.3390/biom11111561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal glioblastoma stem cells (GSCs), a subpopulation in glioblastoma that are responsible for therapy resistance and tumor spreading in the brain, reportedly upregulate aldehyde dehydrogenase isoform-1A3 (ALDH1A3) which can be inhibited by disulfiram (DSF), an FDA-approved drug formerly prescribed in alcohol use disorder. Reportedly, DSF in combination with Cu2+ ions exerts multiple tumoricidal, chemo- and radio-therapy-sensitizing effects in several tumor entities. The present study aimed to quantify these DSF effects in glioblastoma stem cells in vitro, regarding dependence on ALDH1A3 expression. To this end, two patient-derived GSC cultures with differing ALDH1A3 expression were pretreated (in the presence of CuSO4, 100 nM) with DSF (0 or 100 nM) and the DNA-alkylating agent temozolomide (0 or 30 µM) and then cells were irradiated with a single dose of 0-8 Gy. As read-outs, cell cycle distribution and clonogenic survival were determined by flow cytometry and limited dilution assay, respectively. As a result, DSF modulated cell cycle distribution in both GSC cultures and dramatically decreased clonogenic survival independently of ALDH1A3 expression. This effect was additive to the impairment of clonogenic survival by radiation, but not associated with radiosensitization. Of note, cotreatment with temozolomide blunted the DSF inhibition of clonogenic survival. In conclusion, DSF targets GSCs independent of ALDH1A3 expression, suggesting a therapeutic efficacy also in glioblastomas with low mesenchymal GSC populations. As temozolomide somehow antagonized the DSF effects, strategies for future combination of DSF with the adjuvant standard therapy (fractionated radiotherapy and concomitant temozolomide chemotherapy followed by temozolomide maintenance therapy) are not supported by the present study.
Collapse
Affiliation(s)
- Lisa Zirjacks
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Nicolai Stransky
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Klumpp
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Lukas Prause
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Franziska Eckert
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Sabine Schleicher
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Hospital Tuebingen, Children’s Hospital, 72076 Tuebingen, Germany; (S.S.); (R.H.)
| | - Stephan M. Huber
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| | - Katrin Ganser
- Department of Radiation Oncology, Eberhard-Karls University, 72076 Tübingen, Germany; (L.Z.); (N.S.); (L.K.); (L.P.); (F.E.); (D.Z.); (K.G.)
| |
Collapse
|
19
|
Xu Y, Lu L, Luo J, Wang L, Zhang Q, Cao J, Jiao Y. Disulfiram Alone Functions as a Radiosensitizer for Pancreatic Cancer Both In Vitro and In Vivo. Front Oncol 2021; 11:683695. [PMID: 34631519 PMCID: PMC8494980 DOI: 10.3389/fonc.2021.683695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of pancreatic cancer remains very poor worldwide, partly due to the lack of specificity of early symptoms and innate resistance to chemo-/radiotherapy. Disulfiram (DSF), an anti-alcoholism drug widely used in the clinic, has been known for decades for its antitumor effects when simultaneously applied with copper ions, including pancreatic cancer. However, controversy still exists in the context of the antitumor effects of DSF alone in pancreatic cancer and related mechanisms, especially in its potential roles as a sensitizer for cancer radiotherapy. In the present study, we focused on whether and how DSF could facilitate ionizing radiation (IR) to eliminate pancreatic cancer. DSF alone significantly suppressed the survival of pancreatic cancer cells after exposure to IR, both in vitro and in vivo. Additionally, DSF treatment alone caused DNA double-strand breaks (DSBs) and further enhanced IR-induced DSBs in pancreatic cancer cells. In addition, DSF alone boosted IR-induced cell cycle G2/M phase arrest and apoptosis in pancreatic cancer exposed to IR. RNA sequencing and bioinformatics analysis results suggested that DSF could trigger cell adhesion molecule (CAM) signaling, which might be involved in its function in regulating the radiosensitivity of pancreatic cancer cells. In conclusion, we suggest that DSF alone may function as a radiosensitizer for pancreatic cancer, probably by regulating IR-induced DNA damage, cell cycle arrest and apoptosis, at least partially through the CAM signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lunjie Lu
- Department of Radiation Physics, Qingdao Central Hospital, Qingdao, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lili Wang
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Zhao P, Tang X, Huang Y. Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. VIEW 2021. [DOI: 10.1002/viw.20200127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pengfei Zhao
- School of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Xueping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- Artemisinin Research Center Guangzhou University of Chinese Medicine Guangzhou China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients Shanghai China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development Chinese Academy of Sciences Zhongshan China
| |
Collapse
|
21
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
22
|
Ahsan A, Farooq MA, Parveen A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS OMEGA 2020; 5:20450-20460. [PMID: 32832798 PMCID: PMC7439394 DOI: 10.1021/acsomega.0c02548] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/31/2023]
Abstract
A thermosensitive, physically cross-linked injectable hydrogel was formulated for the effective and sustained delivery of disulfiram (DSF) to the cancer cells as there is no hydrogel formulation available until now for the delivery of DSF. As we know, hydrogels have an advantage over other drug delivery systems because of their unique properties, so we proposed to formulate an injectable hydrogel system for the sustained delivery of an anticancer drug (DSF) to cancer cells. To investigate the surface morphology, a scanning electron microscope study was carried out, and for thermal stability of hydrogels, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry) were performed. The rheological behavior of hydrogels was evaluated with the increasing temperature and time. These developed hydrogels possessing excellent biocompatibility could be injected at room temperature following rapid gel formation at body temperature. The swelling index and in vitro drug release studies were performed at different pH (6.8 and 7.4) and temperatures (25 and 37 °C). The cell viability of the blank hydrogel, free DSF solution, and Ch/DSF (chitosan/DSF)-loaded hydrogel was studied by MTT assay on SMMC-7721 cells for 24 and 48 h, which exhibited higher cytotoxicity in a dose-dependent manner in contrast to the free DSF solution. Moreover, the cellular uptake of DSF-loaded hydrogels was observed stronger as compared with free DSF. Hence, chitosan-based hydrogels loaded with DSF possessing exceptional properties can be used as a novel injectable anticancer drug for the sustained delivery of DSF for long-term cancer therapy.
Collapse
Affiliation(s)
- Anam Ahsan
- College
of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Muhammad Asim Farooq
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Amna Parveen
- College
of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic
of Korea
| |
Collapse
|
23
|
Peng Y, Liu P, Meng Y, Hu S, Ding J, Zhou W. Nanoscale Copper(II)-Diethyldithiocarbamate Coordination Polymer as a Drug Self-Delivery System for Highly Robust and Specific Cancer Therapy. Mol Pharm 2020; 17:2864-2873. [PMID: 32551674 DOI: 10.1021/acs.molpharmaceut.0c00284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfiram (DSF), an old alcohol-aversion drug, has been repurposed for cancer therapy, and mechanistic studies reveal that it needs to be metabolized to diethyldithiocarbamate (DTC) and subsequently coordinates with copper(II) to form the DTC-copper complex (CuET) for anticancer activation. Here, we utilized this mechanism to construct a CuET self-delivery nanosystem based on the metal coordination polymer for highly robust and selective cancer therapy. In our design, the nanoparticles were facilely prepared under mild conditions by virtue of the strong coordination between Cu2+ and DTC, yielding 100% CuET loading capacity and allowing for further hyaluronic acid (HA) modification (CuET@HA NPs). The CuET@HA NPs could selectively deliver into cancer cells and release the active component of CuET in response to both endo/lysosome acidic pH and intracellular abundant GSH, which induces strong cytotoxicity toward cancer cells over normal cells taking advantage of the p97 pathway interference mechanism. Upon intravenous injection, the self-assembled system could passively accumulate into a tumor and elicit potent tumor growth inhibition at a dose of 1 mg/kg without any noticeable side effects. Given the cost-effective and easily scaled-up preparation, our designed nanosystem provides a promising strategy to pave the way for clinical translation of DSF-based cancer chemotherapy.
Collapse
Affiliation(s)
- Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.,Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|