1
|
Sellamuthu S, Saminathan E, Veerappan D, Venkatraman Y. Sporting footpaths and toxic dust: a risk-based assessment of urban, suburban, and rural exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-28. [PMID: 40197105 DOI: 10.1080/09603123.2025.2487630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
This study aims to assess the concentrations of potentially toxic elements (PTEs) in deposited dust (DD) from urban, suburban, and residential sporting footpaths (UFPs, SFPs, and RFPs) in Coimbatore, India, and evaluate the associated ecological and health risks. Dust samples were collected from sporting footpaths located in urban, suburban, and residential areas. The total concentrations of PTEs were found to be in USFs (1431 mg/kg), SFs (1073 mg/kg), and RSFs (892 mg/kg). EFs for cadmium exceeded 185, suggesting severe contamination. Ecological risk assessment indicated that cadmium was the primary contributor, accounting for 84.7% of the total ecological risk. Health risk analysis showed that children on USFs faced non-carcinogenic risks that were 5.5 times higher than those of adults, with the highest carcinogenic and non-carcinogenic risks observed in USFs, followed by SSFs and RSFs. This study highlights the significant pollution of sporting footpaths in urban areas, particularly with cadmium, which poses elevated risks to children's health. These findings suggest a need for targeted pollution management strategies to minimize exposure to PTEs, especially in areas with high pedestrian activity. Future research should focus on the long-term health impacts and evaluate pollution control measures for reducing PTE contamination in urban public spaces.
Collapse
Affiliation(s)
- Sadheesh Sellamuthu
- Department of Civil Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, India
| | - Elavarasan Saminathan
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | | | | |
Collapse
|
2
|
Soleimani M, Mirjani M, Ahmed A, Khalilimoghadam B, Cruz MD, Christensen JH. Long-term effects of petroleum mulch on concentration, health, and ecological risks of polycyclic aromatic hydrocarbons in sand dune soils of Khuzestan province, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1430-1446. [PMID: 39731667 DOI: 10.1007/s11356-024-35648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024]
Abstract
Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQBaP), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran. Soil samples were collected from two depths: surface soil (0-10 cm) and deep soil (10-50 cm) across four regions with varying durations of petroleum mulch application: less than 5 years (T5), 5-20 years (T20), 20-30 years (T30), and 30-40 years (T40), and a control sample without mulching. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the concentrations of 19 PAHs and 23 groups of alkylated PAHs (alkyl PAHs) in the soil. Petroleum mulching significantly impacted heavily contaminated soil samples (T5 and T20) with PAH levels ranging from 2.03 to 2.08 mg kg-1. Older samples (T30 and T40) showed lower contamination levels (0.29 and 0.41 mg kg-1), primarily due to the alkylated compounds. ILCR, HI, TEQBaP, TU, and RQ indices were highest in T5 and T20 surface samples, indicating high risk in T5 surface soil from RQ and moderate risk in the others, despite low cancer and non-carcinogenic risks. Although the risk from the compounds, particularly alkyl PAHs, has decreased over time, they could still adversely affect the ecosystem, emphasizing the use of environmentally friendly alternative mulches in such areas.
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Marzieh Mirjani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Abdulazeez Ahmed
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Department of Construction and Project, Environmental Engineering, University of Technology, Baghdad, Iraq
| | - Bijan Khalilimoghadam
- Department of Soil Science, Ramin Agriculture and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Majbrit Dela Cruz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Niepsch D, Clarke LJ, Jones RG, Tzoulas K, Cavan G. Lichen biomonitoring to assess spatial variability, potential sources and human health risks of polycyclic aromatic hydrocarbons (PAHs) and airborne metal concentrations in Manchester (UK). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:379. [PMID: 38499718 PMCID: PMC11291577 DOI: 10.1007/s10661-024-12522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Airborne metals and organic pollutants are linked to severe human health impacts, i.e. affecting the nervous system and being associated with cancer. Airborne metals and polycyclic aromatic hydrocarbons (PAHs) in urban environments are derived from diverse sources, including combustion and industrial and vehicular emissions, posing a threat to air quality and subsequently human health. A lichen biomonitoring approach was used to assess spatial variability of airborne metals and PAHs, identify potential pollution sources and assess human health risks across the City of Manchester (UK). Metal concentrations recorded in lichen samples were highest within the city centre area and along the major road network, and lichen PAH profiles were dominated by 4-ring PAHs (189.82 ng g-1 in Xanthoria parietina), with 5- and 6-ring PAHs also contributing to the overall PAH profile. Cluster analysis and pollution index factor (PIF) calculations for lichen-derived metal concentrations suggested deteriorated air quality being primarily linked to vehicular emissions. Comparably, PAH diagnostic ratios identified vehicular sources as a primary cause of PAH pollution across Manchester. However, local more complex sources (e.g. industrial emissions) were further identified. Human health risk assessment found a "moderate" risk for adults and children by airborne potential harmful element (PHEs) concentrations, whereas PAH exposure in Manchester is potentially linked to 1455 (ILCR = 1.45 × 10-3) cancer cases (in 1,000,000). Findings of this study indicate that an easy-to-use lichen biomonitoring approach can aid to identify hotspots of impaired air quality and potential human health impacts by airborne metals and PAHs across an urban environment, particularly at locations that are not continuously covered by (non-)automated air quality measurement programmes.
Collapse
Affiliation(s)
- Daniel Niepsch
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| | - Leon J Clarke
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Konstantinos Tzoulas
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Gina Cavan
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
4
|
Khodadadi R, Sohrabi M, Loppi S, Tahmasebi Birgani Y, Babaei AA, Neisi A, Baboli Z, Dastoorpoor M, Goudarzi G. Atmospheric pollution by potentially toxic elements: measurement and risk assessment using lichen transplants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1270-1283. [PMID: 36787704 DOI: 10.1080/09603123.2023.2174256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The lichen Usnea articulata collected from an unpolluted area was exposed for 6 months at 26 sites for the sample chosenusing a stratified random design, and the content of potentially toxic elements (PTEs) including As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sn, V, and Zn, was assessed using ICP-MS. The health risk for both adults and children was then calculated using the PTEs concentrations. The results showed that despite the hostile urban conditions, transplanted lichens depicted clear deposition patterns of airborne PTEs, mostly associated with industrial sites, where As and other elements showed remarkably high values. The cumulative hazard index was below the risk threshold, both for adults and children. For the entire population (particularly children) residing in areas surrounding industrial sites, As and Cr appeared to be potentially carcinogenic elements.
Collapse
Affiliation(s)
- Ruhollah Khodadadi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sohrabi
- The Museum of Iranian Lichens, Iranian Research Organization for Science and Technology, Tehran, Iran
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeynab Baboli
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Dastoorpoor
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Iranian Scientific Association of Clean Air, Tehran, Iran
| |
Collapse
|
5
|
Karamianpour J, Arfaeinia H, Ranjbar Vakilabadi D, Ramavandi B, Dobaradaran S, Fazlzadeh M, Torkshavand Z, Banafshehafshan S, Shekarizadeh H, Ahmadi S, Badeenezhad A. Accumulation, sources, and health risks of phthalic acid esters (PAEs) in road dust from heavily industrialized, urban and rural areas in southern Iran. Heliyon 2023; 9:e23129. [PMID: 38144273 PMCID: PMC10746467 DOI: 10.1016/j.heliyon.2023.e23129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
In this research, a total of 51 road dust samples were collected from three districts (Asaluyeh, Bushehr, and Goshoui) in the south of Iran from April to June 2022 and analyzed for the concentration of 7 phthalic acid esters (PAEs) compounds. Asaluyeh was considered as an industrial area (near gas and petrochemical industries), Bushehr as an urban area, and Goshoui as a rural area (far from pollution sources). The PAEs concentration of the street dust samples was determined using a mass detection gas chromatography (GC/MS). The mean ± SD levels of ƩPAEs in samples from industrial, urban, and rural sources were 56.9 ± 11.5, 18.3 ± 9.64, and 5.68 ± 1.85 μg/g, respectively. The mean concentration levels of ƩPAEs was significantly (P < 0.05) higher in samples from the industrial area than urban and rural areas. The mean levels of di(2-Ethylhexyl) phthalate (DEHP) in industrial, urban, and rural areas were 20.3 ± 8.76, 4.59 ± 1.71, and 2.35 ± 0.98 μg/g, respectively. The results of the PCA analysis indicate that the likely major sources of PAEs in the road dust in the studied areas are the application of various plasticizers in industry, solvents, chemical fertilizers, waste disposal, wastewater (e.g., agricultural, domestic, and industrial), and the use of plastic films and plastic-based irrigation pipes in greenhouses. As well as, it was found that the non-cancer risk of exposure to dust-bound PAEs was higher for children than for adults. These values were <1 for both age groups (children and adults) and the exposure of inhabitants to PAEs in road dust did not pose a notable non-cancer risk. The cancer risk from exposure to DEHP in road dust was below the standard range of 10-6 in all three areas. Further studies that consider different routes of exposure to these contaminants are needed for an accurate risk assessment. Moreover, since higher PAEs level was found in industrial area, decision-makers should adopt strict strategies to control the discharging of pollution from industries to the environment and human societies.
Collapse
Affiliation(s)
- Javid Karamianpour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Dariush Ranjbar Vakilabadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Torkshavand
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Banafshehafshan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hanyeh Shekarizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sami Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
6
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kwika A, Klamerus-Iwan A, Sadowska-Rociek A. Variability in Water Capacity of Small-Leaved Linden Associated with Both the Presence of Honeydew and Various Sources of Pollution. PLANTS (BASEL, SWITZERLAND) 2023; 12:3443. [PMID: 37836183 PMCID: PMC10574617 DOI: 10.3390/plants12193443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The process of water retention on the surface of the assimilation apparatus of plants is inextricably linked with the water capacity of tree crowns and depends mainly on the condition of the leaf itself. The main objective of the present study was to investigate how the honeydew coverage and the location of trees related to the content of polycyclic aromatic hydrocarbons affected the differences in the capability of small-leaved linden leaves to capture water. Honeydew coverage was determined with the use of AutoCAD, whereas the content of polycyclic aromatic hydrocarbons was determined using gas chromatography. The value of S (water capacity) was much lower before the appearance of honeydew on the leaf than at the peak moment of honeydew collection. This is due to the hydrophobic properties of the substance. It was also found that the content of polycyclic aromatic hydrocarbons (PAH) in leaves varied depending on the distance of trees from pollution sources, and it was found that the amount of PAHs increased with the growth of honeydew on leaves and in locations exposed to pollution. The highest S and the total amount of PAHs occurred with the combination of the largest amount of pyrogenic impurities with the highest amount of honeydew. Combing pollutants from the air by plants is a very important function, but it may also change the physical properties of leaves, such as wettability.
Collapse
Affiliation(s)
- Agata Kwika
- Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in Krakow, Al. 29-Listopada 46, 31-425 Kraków, Poland
| | - Anna Klamerus-Iwan
- Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in Krakow, Al. 29-Listopada 46, 31-425 Kraków, Poland
| | - Anna Sadowska-Rociek
- Centre of Food Monitoring, Faculty of Food Technology, Malopolska University of Agriculture in Kraków, Ul. Balicka 122, 30-149 Kraków, Poland;
| |
Collapse
|
8
|
Jiang G, Song X, Xie J, Shi T, Yang Q. Polycyclic aromatic hydrocarbons (PAHs) in ambient air of Guangzhou city: Exposure levels, health effects and cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115308. [PMID: 37544068 DOI: 10.1016/j.ecoenv.2023.115308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 pose potentially serious threats to human health. In this study, the distribution characteristics of 16 priority controlled, fine PM (PM2.5)-bound PAHs in the ambient air of Guangzhou city were analysed from 2016 to 2019. Four high-molecular-weight PAHs with the highest annual average concentrations were benzo[ghi]perylene (BghiP; 0.757 ng/m3), indeno(1,2,3-cd)pyrene (IcdP; 0.627 ng/m3), benzo[b]fluoranthene (BbF, 0.519 ng/m3) and 3,4-benzopyrene (BaP; 0.426 ng/m3). Increasing concentrations of BghiP, IcdP, BbF and BaP were associated with increasing numbers of outpatient visits for respiratory diseases, indicating that exposure to these PAHs potentially causes acute respiratory injury in residents. Acute exposure of the human bronchial epithelial cell line BEAS-2B cells to BghiP, IcdP, BbF and BaP in vitro resulted in acute inflammation, DNA damage and apoptosis. Further bioinformatic analysis indicated that nuclear receptor subfamily 1 group D member 1 (NR1D1) may be a key target gene involved in mediating the toxic effects of BghiP. Collectively, our results suggest that BghiP and the other PAHs represented by it can damage the respiratory system and induce lung cancer. This study provides valuable evidence regarding the potential health risks posed by local ambient PAHs pollution.
Collapse
Affiliation(s)
- Guanqing Jiang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Xu Song
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jiaying Xie
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Tongxing Shi
- Guangzhou Center for Disease Control and Prevention, No. 1 Qide Road, Baiyun District, Guangzhou 510440, PR China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
9
|
Ghadrshenas A, Tabatabaie T, Amiri F, Pazira AR. Spatial distribution, sources identification, and health risk assessment polycyclic aromatic hydrocarbon compounds and polychlorinated biphenyl compounds in total suspended particulates (TSP) in the air of South Pars Industrial region-Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1635-1653. [PMID: 35567675 DOI: 10.1007/s10653-022-01286-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
South Pars Industrial Energy Zone, located in the southwest of Iran along the Persian Gulf coast, encompasses many industrial units in the vicinity of urban areas. This research study investigated the effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on human health and the environment. Suspended particulate matters (SPM) in the air sampled, in summer and winter 2019, from ten stations next to industrial units and residential areas. The samples were analyzed by gas chromatography-mass spectrometry (GC-MS). Spatial distribution maps of pollutants in the region were prepared using GIS software. The highest carcinogenic risk due to PAHs and PCBs measured as ([Formula: see text]) and ([Formula: see text], respectively. According to the US Environmental Protection Agency limit ([Formula: see text]), the cancer risks from PAH compounds were significant and need further investigation. The PCB cancer risks were within acceptable ranges. The highest adsorption ratios for PAHs were obtained through skin and PCBs by ingestion. The maximum measured non-carcinogenic hazard indexes (HI) turned out to be 0.037 and 0.023 for PAH and PCB, respectively, and were reported as acceptable risks. The predominant source of PAH in industrial areas was liquid fossil combustion, and in urban areas replaced by coal-wood-sugarcane combustion. Petrochemical complexes, flares, power plants (69%), electric waste disposal sites, and commercial pigments (31%) were reported as PCB sources. Industries activities were the most effective factors in producing the highest level of carcinogenic compounds in the region, and it is necessary to include essential measures in the reform programs.
Collapse
Affiliation(s)
- Alireza Ghadrshenas
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Abdul Rahim Pazira
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
10
|
Nguyen HT, Pham VQ, Nguyen TPM, Nguyen TTT, Tu BM, Le PT. Emission and distribution profiles of polycyclic aromatic hydrocarbons in solid residues of municipal and industrial waste incinerators, Northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38255-38268. [PMID: 36580247 DOI: 10.1007/s11356-022-24680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The concentrations and profiles of 18 polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10), fly ash (FA), and bottom ash (BA) were examined in three incineration residues. Samples were collected from different municipal and industrial solid waste incinerators in Northern Vietnam. The average concentrations of total PAHs in PM10, fly ash, and bottom ash were 9.55 × 103 ng/Nm3, 215 × 103 ng/g, and 2.38 ng/g, respectively. Low-molecular-weight PAHs (2 to 3 rings) were predominant in most samples. The emission factor of total PAHs decreased in the order of FA > BA > PM10. A higher concentration of total PAHs was found in industrial facilities than that in municipal ones. The high carcinogenic proportion of PAHs together with significantly high annual emissions reflect the high pollution risk to the ecosystem by PAHs in the case of reuse of incineration ashes (e.g., brick production). Regarding the carcinogenic risk of PAH-bounded ashes or particles, calculations from this study imply the significant threat for workers who have been manipulated in the incineration facilities, directly exposed to fly and bottom ashes. Meanwhile, the risk from PAH-bound particulate was not considered a significant threat for both normal adults and children. Further study on PAHs contained in incinerator waste dumps should be conducted in Vietnam to assess the potential contamination risk of these incineration by-products.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Vietnam.
| | - Viet Quoc Pham
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Mai Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Thanh Xuan, 334 Nguyen Trai, Hanoi, Vietnam
| | - Thuy Thi Thu Nguyen
- Faculty of Chemistry, University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Binh Minh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong street, Hoan Kiem, Hanoi, Vietnam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
11
|
El-Maradny A, Ibrahim MIA, Radwan IM, Fahmy MA, Emara HI, Mohamed LA. Horizontal and vertical segregation of polycyclic aromatic hydrocarbons in the Egyptian Mediterranean coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86707-86721. [PMID: 35799005 DOI: 10.1007/s11356-022-21880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Egyptian Mediterranean coast receives significant amounts of polycyclic aromatic hydrocarbons (PAHs) from industrial exhausts, riverine inputs, maritime shipping and fishers, and oil and natural gas production and exploration. The present study considers the first exhaustive assessment for the dissolved PAHs along the Egyptian Mediterranean coast (Alexandria to Manzallah) to monitor their spatial distribution and investigate the effect of the marine currents and the role of microorganisms in their distribution. Surface water levels ranged between 124.97 and 301.02 ng L-1 with an average 223.68 ± 41.11 ng L-1. The distribution increases from west to east based on the water circulation in the Mediterranean Sea. The levels in near shore stations were lower than those of middle and onshore stations. The intensive existence of micro-organisms near shore stations consumes great part of PAHs, while this bio-remediation process decreases gradually away from the shoreline leaving relative high concentrations of dissolved PAHs in the middle and onshore stations. Middle and deep-water levels ranged between 312.75 and 1042.95 ng L-1 with an average 633.47 ± 225.53 ng L-1. Deeper waters showed higher PAHs concentrations where the average concentrations of 50 m stations (868.12 ± 138.35 ng L-1) ˃ 30 m stations (629.49 ± 143.85 ng L-1) ˃ 10 m stations (402.79 ± 59.46 ng L-1). The wind-induced waves re-suspend rich PAHs sediment particles to increase its concentration in the water column. Carcinogenic toxic equivalent quotient (TEQ) for total detected PAHs in the middle and deep water represented more than double (75.46 ng TEQ L-1) the value in the surface water (34.76 ng TEQ L-1). The diagnostic ratios and principal component analysis indicated mainly pyrogenic origin in surface, middle, and deep waters.
Collapse
Affiliation(s)
- Amr El-Maradny
- Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah, 21589, Saudi Arabia.
- National Institute of Oceanography and Fisheries, NIOF, Egypt.
| | - Mohamed I A Ibrahim
- National Institute of Oceanography and Fisheries, NIOF, Egypt
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Islam M Radwan
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mamdouh A Fahmy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Hosny I Emara
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Laila A Mohamed
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| |
Collapse
|
12
|
Mohammad Asgari H, Mojiri-Forushani H, Mahboubi M. Temporal and spatial pattern of dust storms, their polycyclic aromatic hydrocarbons, and human health risk assessment in the dustiest region of the world. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:76. [PMID: 36335250 PMCID: PMC9638477 DOI: 10.1007/s10661-022-10703-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the concentration and health risks of polycyclic aromatic hydrocarbons (PAHs) in Abadan City under 4 different climatic conditions: normal days, dusty days, dust with northwesterly winds, and dust with southeasterly winds. It also determined the sources of aromatics and discussed the relationship between meteorological parameters and PAH concentrations. The spatiotemporal distribution of dust in the area was determined using the HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) back trajectory model, moderate resolution imaging spectroradiometer (MODIS) images. For this purpose, sampling was performed for 70 days using an Omni device. The concentrations of 16 PAHs (USEPA) ranged from 46.22 to 90.96 ng/m3. The highest concentration of high molecular weight (HMW) PAHs was 4-6 rings, of which 4 rings were predominant in all samples. PAH sources were identified using diagnostic ratios and principal component analysis (PCA), and it was shown that PAHs mainly originate from a mixture of sources, including vehicular emissions, petrol emissions, and traffic. Wind speed was negatively correlated with dust, except on dusty days. This result indicates a decrease in PAH concentrations when wind speed increases. On the other hand, the dust correlation with PAH was positive on normal days, but a negative correlation was observed on dusty days. This result was due to the lower concentration of PAHs from natural resources (such as dust source areas) vs. human resources (such as traffic and industry). PAH health risk assessment in Abadan City showed that the risk of carcinogenesis was higher on normal days and through skin contact. The probability of incremental lifetime cancer risk (ILCR) in all sampling conditions was potential in terms of carcinogenic risk (10-4-10-6). As a critical risk factor, relevant authorities should prevent, control, and reduce it.
Collapse
|
13
|
Analytical procedure for the concomitant analysis of 242 polar and non-polar organic compounds of different functional groups in fog water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Yu Z, Wang H, Zhang X, Gong S, Liu Z, Zhao N, Zhang C, Xie X, Wang K, Liu Z, Wang JS, Zhao X, Zhou J. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014-2020): Health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127766. [PMID: 34916105 DOI: 10.1016/j.jhazmat.2021.127766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
We established long-term surveillance sites in Jinan city to monitor PM2.5 particles (PM2.5) and PM2.5-bound PAHs (2014-2020). The range of PM2.5 was 15-230 µg/m3. The average annual ƩPAH16 were 433 ± 271 ng/m3 (industrial area) and 299 ± 171.8 ng/m3 (downtown). PAHs captured in winter accounted for 61.5% (industrial area) and 59.1% (downtown) of total PAHs. A hazardous seasonal benzo[a]pyrene level was detected in 2015-2016 winter as 14.03 ng/m3 (14 folds of EU standard). The dominant PM2.5-bound PAHs were benzo[b]fluoranthene (24-26%), chrysene (19-20%), benzo[g,h,i]perylene (15%), Indeno(1,2,3-cd)pyrene (12%) and Benzo[a]pyrene (10%). Toxic equivalent quotients of PAHs were 4.93 ng/m3 (industrial area) and 3.13 ng/m3 (downtown). Excess cancer risks (ECRs) were 4.3 × 10-4 ng/m3 and 2.7 × 10-4 ng/m3, respectively. The ECRs exceeded EPA regulatory limit of 1 × 10-6 ng/m3 largely. Non-negligible excess lifetime cancer risks were found as 36 and 26 related cancer incidences per 1,000,000 people. Consistently, local prevalence of lung cancer raise from 56.97/100,000 to 72.38/100,000; the prevalence of thyroid cancer raise from 10.12/100,000 to 45.26/100,000 from 2014 to 2020. Our findings suggest an urgent need to investigate the adverse health effects of PAHs on local population and we call for more strictly restriction on coal consumption and traffic tail gas emission.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Hong Wang
- Clinical Laboratory, Jinan Hospital, 250013, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Shuping Gong
- Institute of Chronic and Non-communicable Disease, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, 250022, China.
| | - Ning Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Cuiqin Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Xiaorui Xie
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Kaige Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Zhong Liu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| |
Collapse
|
15
|
Quantification and health impact assessment of polycyclic aromatic hydrocarbons (PAHs) emissions from crop residue combustion. Heliyon 2022; 8:e09113. [PMID: 35342830 PMCID: PMC8941160 DOI: 10.1016/j.heliyon.2022.e09113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/24/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Emission of Polycyclic Aromatic Hydrocarbon compounds from combustion of crop residue was investigated. Crop residues comprising maize cobs, maize husks, rice husks and bean chaff were burnt in a furnace at a temperature of 400 °C and the emissions from the combustion process were characterized using standard methods. Health risk through inhalation was assessed using toxic equivalent factors and excess lifetime cancer risk. The results showed the detection of 16 PAH compound which included: Benzo[ghi]perylene, Naphthalene, Acenaphthene, Anthracene, Phenanthrene, Fluorene, Fluoranthene, Acenaphthylene, Pyrene, Benzo[a]anthracene, Dibenzo[a,h]anthracene, Benzo[b]fluoranthene, Chrysene, Benzo[a]pyrene, Indene[1,2,3-cd]pyrene and Benzo[k]fluoranthene. Benzo[b]fluoranthene had highest mean concentration of 1.30 μg/mg while Dibenzo[a,h]anthracene had the lowest mean concentration of 0.01 μg/mg. It was also revealed that the toxicity of PAHs was due to the presence of Benzo[b]fluoranthene for all the samples except for sample 4 for which the main contribution to toxicity was emission from benzo(a)pyrene, while the cancer risk assessment estimated to be 1.2 × 10-1 was far above the acceptable carcinogenic risk limit of 1 × 10-6. This study concluded that, more efforts are needed to reduce emission of PAHs from the combustion of crop residues into the ambient air otherwise, human health could be under threat especially if exposed for a long period.
Collapse
|