1
|
Najjar RS, Grace WW, Siqueira APS, Setka AM, Lu W, Wang S, Feresin RG. Polyphenols have unique cellular effects that are distinct from antioxidant function in Toll-like receptor 4-mediated inflammation in RAW264.7 macrophage-like cells. Nutr Res 2024; 132:136-151. [PMID: 39580917 DOI: 10.1016/j.nutres.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Plant polyphenols are bioactive compounds touted for their antioxidant effects, and this is often the primary attribute used to explain their health benefits. However, we hypothesize that polyphenols have molecular properties independent of antioxidant function. The objective of this study was to investigate whether polyphenols had distinct molecular effects compared to pure antioxidants. RAW 264.7 macrophages were pretreated with either TEMPOL, a superoxide scavenger, N-acetyl cysteine, a hydroxyl radical and hydrogen peroxide scavenger, or polyphenol extracts from blackberry, blueberry, raspberry, strawberry, kale, and baru nut. After 1 hour of pretreatment, cells were treated with lipopolysaccharides (100 ng/mL) for an additional 6 hour. Antioxidants and polyphenol extracts elicited antioxidant effects in vitro; however, polyphenols regulated redox proteins in a distinct, protective manner, whereas antioxidants, TEMPOL, and N-acetyl cysteine, did not. Additionally, distinct effects were observed in downstream Toll-like receptor 4 signaling and transcriptional activity of inflammatory proteins. We conclude that polyphenols have unique molecular effects that are independent of just their free radical scavenging capacity. This work advances our molecular understanding of how polyphenols act to target inflammation.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Wesley W Grace
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Ana P S Siqueira
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Alivia M Setka
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Wen Lu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Turkoglu B, Mansuroglu B. Investigating the Effects of Chelidonic Acid on Oxidative Stress-Induced Premature Cellular Senescence in Human Skin Fibroblast Cells. Life (Basel) 2024; 14:1070. [PMID: 39337855 PMCID: PMC11433492 DOI: 10.3390/life14091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of chelidonic acid (CA) on hydrogen peroxide (H2O2) induced cellular senescence in human skin fibroblast cells (BJ). Cellular senescence is a critical mechanism that is linked to age-related diseases and chronic conditions. CA, a γ-pyrone compound known for its broad pharmacological activity, was assessed for its potential to mitigate oxidative stress and alter senescence markers. A stress-induced premature senescence (SIPS) model was designed in BJ fibroblast cells using the oxidative stress agent H2O2. After this treatment, cells were treated with CA, and the potential effect of CA on senescence was evaluated using senescence-related β-galactosidase, 4',6-diamino-2-phenylindole (DAPI), acridine-orange staining (AO), comet assay, molecular docking assays, gene expression, and protein analysis. These results demonstrate that CA effectively reduces senescence markers, including senescence-associated β-galactosidase activity, DNA damage, lysosomal activity, and oxidative stress indicators such as malondialdehyde. Molecular docking revealed CA's potential interactions with critical proteins involved in senescence signalling pathways, suggesting mechanisms by which CA may exert its effects. Gene expression and protein analyses corroborated the observed anti-senescent effects, with CA modulating p16, p21, and pRB1 expressions and reducing oxidative stress markers. In conclusion, CA appeared to have senolytic and senomorphic potential in vitro, which could mitigate and reverse SIPS markers in BJ fibroblasts.
Collapse
Affiliation(s)
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
3
|
Yadav R, Kumar D, Singh J, Jangra A. Environmental toxicants and nephrotoxicity: Implications on mechanisms and therapeutic strategies. Toxicology 2024; 504:153784. [PMID: 38518838 DOI: 10.1016/j.tox.2024.153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Kidneys are one of the most important organs in the human body. In addition to filtering 200 liters of fluid every 24 hours, the kidney also regulates acid-base balance, maintains electrolyte balance, and removes waste and toxicants from the body. Nephrotoxicity is the term used to describe the deterioration of kidney function caused by the harmful effects of medications and various types of environmental toxicants. Exposure to environmental toxicants is an inevitable side effect in the world's increasing industrialization and even more prevalent in underdeveloped nations. Growing data over the past few years has illuminated the probable connection between environmental toxicants and nephrotoxicity. Phthalates, microplastics, acrylamide and bisphenol A are environmental toxicants of particular concern, which are known to have nephrotoxic effects. Such toxicants may accumulate in the kidneys of humans after being consumed, inhaled, or come into contact with the skin. They can enter cells through endocytosis and accumulate in the cytoplasm. Small-sized nephrotoxicants can cause a variety of ailments including inflammation with increased production of pro-inflammatory cytokines, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. This study uncovers the potential for new insights concerning the relationship between various environmental toxicants and kidney health. The objectives of this review is to establish information gaps, assess and identify the toxicity mechanisms of different nephrotoxicants, identify innovative pharmacological therapies that demonstrate promising therapeutic benefits/ relevance, and discuss the predictions for the future based on the analysis of the literature.
Collapse
Affiliation(s)
- Rachna Yadav
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| | - Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| |
Collapse
|
4
|
Vishnupriya N, Narayanaswamy R. Human Intelectin-1 (hITL-1) as Modulator of Metabolic Syndrome (MetS): An In Silico Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1173-S1180. [PMID: 38882764 PMCID: PMC11174207 DOI: 10.4103/jpbs.jpbs_518_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 06/18/2024] Open
Abstract
Human intelectin-1 (hITL-1) has been known to be involved in diseases such as asthma, cancer, metabolic disorders, and inflammatory bowel disease. In the present study, we aimed to evaluate hITL-1 as modulator of metabolic syndrome (MetS) using an in silico approach. AQ2 - The eight selected human (h) proteins, namely tumor necrosis factor-alpha (hTNF-alpha), myeloid differentiation primary response protein 88 (hMyD88), toll like-receptor 4 (hTLR4), cyclooxygenase 2 (hCOX 2), vascular cell adhesion molecule 1 (hVCAM 1), nuclear factor kappa B (hNF kappa B), leptin (hleptin), and interleukin 6 (hIL 6), were investigated on the docking analysis of hITL-1 (protein-protein) by using the HDOCK method. Furthermore, physicochemical properties of eight interested proteins were carried out using ProtParam tool. In the present study, two selected proteins, namely hMyD88, hCOX 2, have shown theoretical isoelectric point (PI) values greater than 7.0 which indicates these proteins are basic in nature. The protein-protein docking analysis showed that hNF kappa B exhibited the maximum docking score of -311.95 (kcal/mol) with the target protein hITL 1. Thus, the present find provides a new knowledge in understanding the hITL 1 as modulator of metabolic syndrome.
Collapse
Affiliation(s)
- N Vishnupriya
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Radhakrishnan Narayanaswamy
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Kraokaew P, Manohong P, Prasertsuksri P, Jattujan P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Ethyl Acetate Extract of Marine Algae, Halymenia durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Mar Drugs 2022; 20:707. [PMID: 36421985 PMCID: PMC9696495 DOI: 10.3390/md20110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2023] Open
Abstract
Halymenia durvillei is a red alga distributed along the coasts of Southeast Asian countries including Thailand. Previous studies have shown that an ethyl acetate fraction of H. durvillei (HDEA), containing major compounds including n-hexadecanoic acid, 2-butyl-5-hexyloctahydro-1H-indene, 3-(hydroxyacetyl) indole and indole-3-carboxylic acid, possesses high antioxidant and anti-lung cancer activities. The present study demonstrated that HDEA could protect mouse skin fibroblasts (L929) and human immortalized keratinocytes (HaCaT) against photoaging due to ultraviolet A and B (UVA and UVB) by reducing intracellular reactive oxygen species (ROS) and expressions of matrix metalloproteinases (MMP1 and MMP3), as well as increasing Nrf2 nuclear translocation, upregulations of mRNA transcripts of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase (HMOX) and glutathione S-transferase pi1 (GSTP1), and procollagen synthesis. The results indicate that HDEA has the potential to protect skin cells from UV irradiation through the activation of the Nrf2 pathway, which leads to decreasing intracellular ROS and MMP production, along with the restoration of skin collagen.
Collapse
Affiliation(s)
- Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | | | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakhon Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Montakan Tamtin
- Kung Krabean Bay Royal Development Center, Department of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Frangulosid as a novel hepatitis B virus DNA polymerase inhibitor: a virtual screening study. In Silico Pharmacol 2018; 6:10. [PMID: 30607323 DOI: 10.1007/s40203-018-0047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) infects more than 400 million humans Worldwide. Currently, development of new anti-HBV agents is focused on inhibiting of HBV DNA polymerase activity. The natural components of medicinal plant have a broad spectrum of biological activities with therapeutic properties which can be exploited in various steps of drug discovery. Currently, in silico analyses have been introduced as alternative or supplements methods for drug discovery. This study was planned to in silico screening novel HBV DNA polymerase inhibitor(s) from R. palmatum, R. coreanus and S. officinalis. For this purpose, a set of dominant phytochemicals from mentioned plants were retrieved from PubChem database and primary screening was performed with molecular docking method using iGemdock 2.1 software. SwissADME and MedChem Designer 3.0 were used to calculate the drug-likeness parameters of the ligands. Furthermore, the genotoxicity of the studied ligands was predicted using Toxtree 2.6.6 software. Final analysis of screened compounds was done using Autodock 4 software. Result confirmed that Frangulosid and Lindleyin acid have most and least efficacy in HBV DNA polymerase inhibition with the inhibition constant of 2.97 and 53.83 µM, respectively. Results also showed that, the amino acids, involved in interaction, were different for each compound. In this regards, results revealed that the main amino acids residues of the receptor, involved in interaction with Quercetin-3-glucuronide, Frangulosid and Lindleyin separately, located in 420-424, 606-615 and 512-542 spectra, respectively. In conclusion, Frangulosid can be considered as a good candidate for more investigation of its anti-HBV activity.
Collapse
|