1
|
Shi S, Li J, Zhao X, Liu Q, Song SJ. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. PHYTOCHEMISTRY 2021; 191:112895. [PMID: 34403885 DOI: 10.1016/j.phytochem.2021.112895] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Prenylated flavonoids, a unique class of flavonoids which combine a flavonoid skeleton and a lipophilic prenyl side-chain, possess great potential biological activities including cytotoxicity, anti-inflammation, anti-Alzheimer, anti-microbial, anti-oxidant, anti-diabetes, estrogenic, vasorelaxant and enzyme inhibition. Recently, prenylated flavonoids have become an indispensable anchor for the development of new therapeutic agents, and have received increasing from medicinal chemists. The prenylated flavonoids have been outstanding developed through isolation, semi or fully synthesis in a very short period of time, which proves the great value in medicinal chemistry researches. In this review, research progress of prenylated flavonoids including natural prenylated flavonoids, structural modification, synthetic methodologies and pharmacological activities was summarized comprehensively. Furthermore, the structure-activity relationships (SARs) of prenylated flavonoids were summarized which provided a basis for the selective design and optimization of multifunctional prenylated flavonoid derivatives for the treatment of multi-factorial diseases in clinic.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuemei Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping, 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R, Rupasinghe HPV. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 2021; 94:108623. [PMID: 33705948 DOI: 10.1016/j.jnutbio.2021.108623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rebecca Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, West Virginia, USA
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE; College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|