1
|
Wang L, Du H, Wang X, Hao D, Li Q, Zhu H, Li C, Wang Q. A critical review of COFs-based photocatalysis for environmental remediation. ENVIRONMENTAL RESEARCH 2025; 272:121166. [PMID: 39978624 DOI: 10.1016/j.envres.2025.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous crystalline polymers formed through covalent bonding of molecular building blocks. Numerous fabrication strategies have been developed, including solvothermal, ionothermal, microwave, mechanochemical, and sonochemical methods, alongside ligand substitution and post-modification techniques, which allow for precise control over the structures and properties of COFs. The exceptional physicochemical stability, large specific surface area, broad visible light absorption, and extended π-conjugated systems have sparked significant interest in photocatalytic applications. Recently, COFs have shown remarkable efficacy in environmental remediation, demonstrating the ability to degrade a wide range of organic pollutants, including dyes, antibiotics, and drugs, as well as to reduce/oxidize heavy metals such as Cr(VI), U(VI), and As(III), in addition to targeting biological pollutants. This review comprehensively explores recent advancements in COFs-based photocatalysis, covering synthetic methods, COF types, modification method, theoretical calculations, environmental applications, and underlying mechanisms. Additionally, the challenges and opportunities for COFs as a robust, cost-effective technology in practical applications was discussed, and offering valuable insights for researchers in environmental remediation, materials science, and photocatalysis.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Du
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqing Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qiang Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Chunjuan Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qi Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Ren Y, Yang S, Xu Y. Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications. Acc Chem Res 2025; 58:474-487. [PMID: 39851091 DOI: 10.1021/acs.accounts.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship. However, due to the poor reversibility of the basic reaction for constructing the triazine unit and the traditional harsh synthesis conditions, it remains a considerable challenge to synthesize crystalline CTFs with diverse molecular structures, and there is still a significant lack of understanding of their polymerization mechanism, which limits their precise structural design, large-scale preparation, and practical applications. As the basic building block of bulk crystalline CTFs, two-dimensional triazine polymers (2D-TPs) which ideally have single-atom thickness have also aroused intensive interest due to their ultrathin 2D sheet morphology with structural flexibility, a fully exposed molecular plane and active sites, and excellent dispersibility and processability. However, the efficient and scalable production of high-quality 2D-TPs and the investigation of their unique properties and functions remain largely unexplored.In this Account, we summarize our recent contributions to the synthesis and application exploration of crystalline CTFs and 2D-TPs. We first introduce the design, synthesis, and polymerization mechanism of the crystalline CTFs. In order to synthesize high-quality CTFs, we have successively used a series of new synthetic methods including a solution polymerization strategy, microwave-assisted superacid-catalyzed polymerization strategy, polyphosphoric acid-catalyzed polymerization strategy, and solvent-free FeCl3-catalyzed polymerization strategy, achieving the production of highly crystalline layered CTFs from the gram level to the hundred-gram level and then to the kilogram level and realizing new CTF molecular structures. We also reveal a direct ordered 2D polymerization mechanism that provided meaningful guidance for the controllable preparation of functional CTFs. Next, we introduce the design, synthesis, and formation mechanism of 2D-TPs. We have developed effective bottom-up and top-down strategies to prepare 2D-TPs for different needs. On one hand, we have established the dynamic interface polymerization method, the monomer-dependent method, and the solvent-free salt-catalyzed polymerization strategy for the direct synthesis of ultrathin 2D-TPs with thickness down to the single-layer limit and provided important insights into the 2D polymerization mechanism. On the other hand, we have opened up the physical and chemical exfoliation of crystalline layered CTFs such as liquid sonication and ball milling exfoliation and covalent and noncovalent modification exfoliation for the large-scale production of 2D-TPs. Then, we present the application progress of crystalline CTFs and 2D-TPs in various batteries, photo/electrocatalysis, and adsorbents with an emphasis on their unique and outstanding performance and structure-property relationship. Lastly, the main challenges faced by crystalline CTFs and 2D-TPs in practical applications and future research directions are discussed in detail. We hope that this Account will provide valuable insights and practical strategies for promoting the development of functional organic framework materials and 2D polymer materials.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Shuai Yang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Qiao H, Zhao K, Wang S, Xu X, Chen S, Kong X, Yang L, Jiao M, Zhai L. Construction of Covalent Triazine Frameworks with Electronic Donor-Acceptor System for Efficient Photocatalytic C-H Hydroxylation of Imidazole[1,2-α]Pyridine Derivatives. Chemistry 2024; 30:e202402246. [PMID: 39143661 DOI: 10.1002/chem.202402246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Sicheng Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lipeng Zhai
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
4
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
5
|
Sun R, Tan B. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry 2023; 29:e202203077. [PMID: 36504463 DOI: 10.1002/chem.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
6
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Wang Y, Li X, Dong X, Zhang F, Lang X. Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O 2. J Colloid Interface Sci 2022; 616:846-857. [PMID: 35257934 DOI: 10.1016/j.jcis.2022.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023]
Abstract
Recently, triazine-based two dimensional (2D) porous materials have received increasing attention in photocatalysis. Herein, CTF-1, a covalent triazine framework, was adopted as the blueprint for designing a 2D bespoke photocatalyst. The thiazolo[5,4-d]thiazole (TzTz) linkage was inserted into the framework of CTF-1, affording TzTz-TA, which belongs to conjugated microporous polymers (CMPs). Rather than the direct insertion via the challenging CH activation, TzTz-TA was assembled from 2,4,6-tris(4-formylphenyl)-1,3,5-triazine and dithiooxamide, in which TzTz was formed in situ by a process of catalyst-free solvothermal condensation. Both CTF-1 and TzTz-TA had similar energy gaps (Eg), photocurrents, and charge carrier lifetimes, in line with the similar molecular underpinnings. However, the reduction potential of TzTz-TA is less negative than that of CTF-1 due to the insertion of TzTz linkage, in a more appropriate position for activating O2 to superoxide (O2•-). In return, blue light-mediated oxidation of sulfides to sulfoxides with O2 over TzTz-TA was accomplished with significantly superior conversions to those over CTF-1. Intriguingly, extensive sulfides could be oxidized to corresponding sulfoxides with outstanding recycling stability of TzTz-TA. Notably, attendance of an induction period was observed during TzTz-TA photocatalysis. This work highlights the vast potential of designing triazine-based porous materials to meet the tailor-made demands, such as the oxidative transformation of organic molecules with O2.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Ding H, Mal A, Wang C. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1494-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wang L, Wang D. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Meng W, Li Y, Zhao Z, Song X, Lu F, Chen L. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Wang J, Wang K, Xu Y. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS NANO 2021; 15:19026-19053. [PMID: 34842431 DOI: 10.1021/acsnano.1c09194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium metal anodes (LMAs) have attracted much attention in recent years because of their high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.040 V vs standard hydrogen electrode). Lithium metal can be coupled with various cathodes to construct high-energy-density lithium metal batteries (LMBs) which hold great promise for next-generation batteries. However, the unstable solid electrolyte interphases (SEIs) and the uncontrollable lithium dendrite growth severely hinder the commercial development of LMAs. The emerging 2D polymers (2DPs), which possess high mechanical flexibility, high specific surface area, abundant surface chemistry, and rich chemical modification characteristics, have shown great advantages in addressing the inherent issues of LMAs. Herein, the current progress of 2DPs for stable and dendrite-free LMAs in liquid- and solid-based batteries is comprehensively reviewed. Some perspectives for the application of 2DPs in LMBs are also discussed. It is believed that the emerging 2DPs will provide insights into developing high-energy-density LMBs and beyond.
Collapse
Affiliation(s)
- Jiwei Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Northeast Center for Chemical Energy Storage (NECCES), Binghamton University, Binghamton, New York 13902, United States
| | - Kaixi Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
12
|
Jiang F, Wang Y, Qiu T, Zhang Y, Zhu W, Yang C, Huang J, Fang Z, Dai G. Superlithiation Performance of Covalent Triazine Frameworks as Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48818-48827. [PMID: 34613705 DOI: 10.1021/acsami.1c14838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organics with the merit of renewability have been viewed as the promising alternative of inorganic electrode materials in lithium-ion batteries, but most of them display inferior performance due to the sluggish ion/electron diffusion and the potential dissolution in aprotic electrolytes. Here, covalent triazine frameworks (CTFs-1), full of vertical pores and layered spaces for Li+ transfer, have been synthesized with p-dicyanobenzene as the monomer by a facile two-step method including a prepolymerization with CF3SO3H as the catalyst and deep polymerization in molten ZnCl2. CTFs-1-400, obtained at the deep polymerization temperature of 400 °C, exhibits the superlithiation property with the specific capacities of 1626 mA h g-1 at 25 °C and 1913 mA h g-1 at 45 °C at 100 mA g-1, indicating the formation of Li6C6/Li6C3N3 in the reduction process. Electrochemical analysis and density functional theory calculation indicate that the ultrahigh capacity is mainly contributed by the capacitance of micropores and the redox capacity of benzene and triazine rings. Moreover, CTFs-1-400 displays the specific capacity of 740 mA h g-1 for 1000 cycles at 1 A g-1 with almost no capacity fading.
Collapse
Affiliation(s)
- Fei Jiang
- Mathematic Information College, Shaoxing University, Shaoxing 312000, P. R. China
| | - Yeji Wang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Tianpei Qiu
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Yi Zhang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Weijie Zhu
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Chaofan Yang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Junjie Huang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Zebo Fang
- Mathematic Information College, Shaoxing University, Shaoxing 312000, P. R. China
| | - Guoliang Dai
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| |
Collapse
|
13
|
Chaubey S, Yadav RK, Tripathi SK, Yadav BC, Singh SN, Kim TW. Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochem Photobiol 2021; 98:150-159. [PMID: 34390001 DOI: 10.1111/php.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Covalent triazine frameworks (CTFs), belonging to the super-family of covalent organic frameworks, have attracted significant attention as a new type of photosensitizer due to the superb light harvesting ability and efficient charge transfer originating from the large surface area. However, the wide optical band gap in CTFs, which is larger than 3.0 eV, hinders the efficient light harvesting in the visible range. To overcome this limitation, we developed the new type CTFs photocatalyst based on the donor-acceptor conjugation scheme by using melamine (M) and 2,6-diaminoanthraquinone (AQ) as monomeric units. The melamine-2,6-diaminoanthraquinone based covalent triazine frameworks (M-AQ-CTFs) photocatalyst shows the excellent light harvesting capacity with high molar extinction coefficient, and the suitable optical band gap involving the internal charge transfer character. Combination of M-AQ-CTFs and artificial photosynthetic system including the organometallic rhodium complex, acting as an electron mediator, exhibited the excellent photocatalytic efficiency for the regeneration of the nicotinamide cofactors such as NAD(P)H. In addition, this photocatalyst showed the high photocatalytic efficiency for the metal-free aerobic oxidation of sulfide. This study demonstrates the high potential of CTFs photocatalyst with the donor-acceptor conjugated scheme can be actively used for the artificial photosynthesis.
Collapse
Affiliation(s)
- Surabhi Chaubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P., India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P., India
| | - Santosh K Tripathi
- Defence Materials Stores and Research & Development Establishment (DMSRDE), P. O. G. T. Road, Kanpur, 208013, India
| | - B C Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, U.P., India
| | - S N Singh
- Department of Humanities & Management Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| |
Collapse
|
14
|
Wei Y, Wan J, Wang J, Zhang X, Yu R, Yang N, Wang D. Hollow Multishelled Structured SrTiO 3 with La/Rh Co-Doping for Enhanced Photocatalytic Water Splitting under Visible Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005345. [PMID: 33464723 DOI: 10.1002/smll.202005345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/02/2020] [Indexed: 06/12/2023]
Abstract
La- and Rh-co-doped SrTiO3 (STO:La/Rh) hollow multishelled structures (HoMSs) are fabricated by adding La3+ and Rh3+ ions during the hydrothermal process of converting TiO2 HoMSs to STO HoMSs. STO:La/Rh HoMSs have successfully expanded the light absorption edge to 520 nm. Accompanied with the benefits of the unique hierarchical structure and relatively thin shells, STO:La/Rh HoMSs exhibit elevated light-harvesting capacity and charge separation efficiency. Compared with STO:La/Rh nanoparticles (NPs), STO:La/Rh HoMSs demonstrate enhanced photocurrent response, photocatalytic hydrogen evolution activity, and the quantum efficiency. Moreover, overall water splitting is realized by a Z-scheme system combining STO:La/Rh HoMSs with BiVO4 (BVO) nanosheets with 1 wt% Pt as the co-catalyst. Steady evolution of hydrogen and oxygen is performed under both visible light and simulated sunlight irradiation. The solar-to-hydrogen efficiency of double-shelled STO:La/Rh HoMS-BVO photocatalysts reaches 0.08%, which is twofold higher than STO:La/Rh NP-BVO photocatalysts.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Jiangyan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Xing Zhang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| |
Collapse
|
15
|
Chen H, Fan J, Fu Y, Do-Thanh CL, Suo X, Wang T, Popovs I, Jiang DE, Yuan Y, Yang Z, Dai S. Benzene Ring Knitting Achieved by Ambient-Temperature Dehalogenation via Mechanochemical Ullmann-Type Reductive Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008685. [PMID: 33876474 DOI: 10.1002/adma.202008685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The current approaches capable of affording conjugated porous networks (CPNs) still rely on solution-based coupling reactions promoted by noble metal complexes or Lewis acids, on-surface polymerization conducted in ultrahigh-vacuum environment at very high temperatures (>200 °C), or mechanochemical Scholl-type reactions limited to electron-rich substrates. To develop simple and scalable approaches capable of making CPNs under neat and ambient conditions, herein, a novel and complementary method to the current oxidative Scholl coupling processes is demonstrated to afford CPNs via direct aromatic ring knitting promoted by mechanochemical Ullmann-type reactions. The key to this strategy lies in the dehalogenation of aromatic halides in the presence of Mg involving the formation of Grignard reagent intermediates. Products (Ph-CPN-1) obtained via direct CC bond formation between 1,2,4,5-tetrabromobenzene (TBB) monomer feature high surface areas together with mesoporous architecture. The versatility of this approach is confirmed by the successful construction of various CPNs via knitting of the corresponding aromatic rings (e.g., pyrene and triphenylene), and even highly crystalline graphite product was obtained. The CPNs exhibit good electrochemical performance as the anode material in lithium-ion batteries (LIBs). This approach expands the frontiers of CPN synthesis and provides new opportunities to their scalable applications.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Juntian Fan
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xian Suo
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tao Wang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Yating Yuan
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|