1
|
Deng Y, Du Z, Du S, Li N, Wang W, Su K, Yuan D. Stable Porous Organic Cage Nanocapsules for pH-Responsive Anticancer Drug Delivery for Precise Tumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7535-7543. [PMID: 39395005 PMCID: PMC11577425 DOI: 10.1021/acsabm.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
The search for drug nanocarriers with stimuli-responsive properties and high payloads for targeted drug delivery and precision medicine is currently a focal point of biomedical research, but this endeavor still encounters various challenges. Herein, a porous organic cage (POC) is applied to paclitaxel (PTX) drug delivery for cancer therapy for the first time. Specifically, water-soluble, stable, and biocompatible POC-based nanocapsules (PTX@POC@RH40) with PTX encapsulation efficiency over 98% can be synthesized by simply grafting nonionic surfactant (Polyoxyl 40 hydrogenated castor oil, RH40) on the POC surface. These PTX@POC@RH40 nanocapsules demonstrate remarkable stability for more than a week without aggregation and exhibit pH-responsive behavior under acidic conditions (pH 5.5) and display sustained release behavior at both pH 7.4 and pH 5.5. Intravenous administration of PTX@POC@RH40 led to a 3.5-fold increase in PTX bioavailability compared with the free PTX group in rats. Moreover, in vivo mouse model experiments involving 4T1 subcutaneous breast cancer tumors revealed that PTX@POC@RH40 exhibited enhanced anticancer efficacy with minimal toxicity compared with free PTX. These findings underscore the potential of POCs as promising nanocarriers for stimuli-responsive drug delivery in therapeutic applications.
Collapse
Affiliation(s)
- Yanping Deng
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhenhong Du
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shunfu Du
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- Fujian
Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenjing Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kongzhao Su
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Qiu F, Xu N, Wang W, Su K, Yuan D. Adsorptive Separation of Methylfuran and Dimethylfuran by a Robust Porous Organic Cage. CHEM & BIO ENGINEERING 2024; 1:171-178. [PMID: 39975643 PMCID: PMC11835186 DOI: 10.1021/cbe.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
As vital raw materials in the chemical industry, 2-methylfuran (MeF) and 2,5-dimethylfuran (DMeF) are commonly produced as mixtures. The selective separation of MeF and DMeF is crucial yet challenging, with significant industrial and economic implications. This study presents an energy-efficient separation technique using a robust calix[4]resorcinarene-based supramolecular porous organic cage (POC), CPOC-301, to effectively capture DMeF from an equimolar MeF/DMeF mixture within 2 h, yielding 95.3% purity. The exceptional separation efficiency stems from the superior structural stability of CPOC-301, maintaining its initial porous crystalline structure during separation. Calculations show that CPOC-301 forms more C-H···π hydrogen bonds with DMeF versus MeF, accounting for its DMeF selectivity. CPOC-301 can be easily regenerated via heat under a vacuum and reused for over five adsorption-desorption cycles without significant performance loss. This work introduces an approach to separate similar organic molecules effectively using POC materials.
Collapse
Affiliation(s)
- Fenglei Qiu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- College
of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ning Xu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenjing Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
| | - Kongzhao Su
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang Z, Han W, Shi R, Han X, Zheng Y, Xu J, Bu XH. Mechanoresponsive Flexible Crystals. JACS AU 2024; 4:279-300. [PMID: 38425899 PMCID: PMC10900217 DOI: 10.1021/jacsau.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.
Collapse
Affiliation(s)
- Zhihua Wang
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xiao Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|