1
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
3
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
4
|
Murabito A, Hirsch E, Ghigo A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front Cardiovasc Med 2020; 7:35. [PMID: 32226791 PMCID: PMC7080657 DOI: 10.3389/fcvm.2020.00035] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac side effects are a major drawback of anticancer therapies, often requiring the use of low and less effective doses or even discontinuation of the drug. Among all the drugs known to cause severe cardiotoxicity are anthracyclines that, though being the oldest chemotherapeutic drugs, are still a mainstay in the treatment of solid and hematological tumors. The recent expansion of the field of Cardio-Oncology, a branch of cardiology dealing with prevention or treatment of heart complications due to cancer treatment, has greatly improved our knowledge of the molecular mechanisms behind anthracycline-induced cardiotoxicity (AIC). Despite excessive generation of reactive oxygen species was originally believed to be the main cause of AIC, recent evidence points to the involvement of a plethora of different mechanisms that, interestingly, mainly converge on deregulation of mitochondrial function. In this review, we will describe how anthracyclines affect cardiac mitochondria and how these organelles contribute to AIC. Furthermore, we will discuss how drugs specifically targeting mitochondrial dysfunction and/or mitochondria-targeted drugs could be therapeutically exploited to treat AIC.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Hwang M, Han S, Park MC, Leem CH, Shim EB, Yim DS. Three-Dimensional Heart Model-Based Screening of Proarrhythmic Potential by in silico Simulation of Action Potential and Electrocardiograms. Front Physiol 2019; 10:1139. [PMID: 31551815 PMCID: PMC6738014 DOI: 10.3389/fphys.2019.01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
The proarrhythmic risk is a major concern in drug development. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative has proposed the JTpeak interval on electrocardiograms (ECGs) and qNet, an in silico metric, as new biomarkers that may overcome the limitations of the hERG assay and QT interval. In this study, we simulated body-surface ECGs from patch-clamp data using realistic models of the ventricles and torso to explore their suitability as new in silico biomarkers for cardiac safety. We tested seven drugs in this study: dofetilide (high proarrhythmic risk), ranolazine, verapamil (QT increasing, but safe), bepridil, cisapride, mexiletine, and diltiazem. Human ventricular geometry was reconstructed from computed tomography (CT) images, and a Purkinje fiber network was mapped onto the endocardial surface. The electrical wave propagation in the ventricles was obtained by solving a reaction-diffusion equation using finite-element methods. The body-surface ECG data were calculated using a torso model that included the ventricles. The effects of the drugs were incorporated in the model by partly blocking the appropriate ion channels. The effects of the drugs on single-cell action potential (AP) were examined first, and three-dimensional (3D) body-surface ECG simulations were performed at free Cmax values of 1×, 5×, and 10×. In the single-cell and ECG simulations at 5× Cmax, dofetilide, but not verapamil or ranolazine, caused arrhythmia. However, the non-increasing JTpeak caused by verapamil and ranolazine that has been observed in humans was not reproduced in our simulation. Our results demonstrate the potential of 3D body-surface ECG simulation as a biomarker for evaluation of the proarrhythmic risk of candidate drugs.
Collapse
Affiliation(s)
| | - Seunghoon Han
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, Seoul, South Korea.,Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min Cheol Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| | - Chae Hun Leem
- Department of Physiology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, South Korea
| | - Dong-Seok Yim
- Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, Seoul, South Korea.,Pharmacometrics Institute for Practical Education and Training (PIPET), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
6
|
Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases 2017; 5:diseases5020014. [PMID: 28933367 PMCID: PMC5547981 DOI: 10.3390/diseases5020014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022] Open
Abstract
Despite significant improvements in morbidity and mortality with current evidence-based pharmaceutical-based treatment of heart failure (HF) over the previous decades, the burden of HF remains high. An alternative approach is currently being developed, which targets myocardial energy efficiency and the dysfunction of the cardiac mitochondria. Emerging evidence suggests that the insufficient availability of ATP to the failing myocardium can be attributed to abnormalities in the myocardial utilisation of its substrates rather than an overall lack of substrate availability. Therefore, the development of potential metabolic therapeutics has commenced including trimetazidine, ranolazine and perhexiline, as well as specific mitochondrial-targeting pharmaceuticals, such as elamipretide. Large randomised controlled trials are required to confirm the role of metabolic-modulating drugs in the treatment of heart failure, but early studies have been promising in their possible efficacy for the management of heart failure in the future.
Collapse
|
7
|
Molecular targets of the Warburg effect and inflammatory cytokines in the pathogenesis of pulmonary artery hypertension. Clin Chim Acta 2017; 466:98-104. [DOI: 10.1016/j.cca.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/01/2023]
|
8
|
Salazar CA, Basilio Flores JE, Veramendi Espinoza LE, Mejia Dolores JW, Rey Rodriguez DE, Loza Munárriz C, Cochrane Heart Group. Ranolazine for stable angina pectoris. Cochrane Database Syst Rev 2017; 2:CD011747. [PMID: 28178363 PMCID: PMC6373632 DOI: 10.1002/14651858.cd011747.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Stable angina pectoris is a chronic medical condition with significant impact on mortality and quality of life; it can be macrovascular or microvascular in origin. Ranolazine is a second-line anti-anginal drug approved for use in people with stable angina. However, the effects of ranolazine for people with angina are considered to be modest, with uncertain clinical relevance. OBJECTIVES To assess the effects of ranolazine on cardiovascular and non-cardiovascular mortality, all-cause mortality, quality of life, acute myocardial infarction incidence, angina episodes frequency and adverse events incidence in stable angina patients, used either as monotherapy or as add-on therapy, and compared to placebo or any other anti-anginal agent. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and the Conference Proceedings Citation Index - Science in February 2016, as well as regional databases and trials registers. We also screened reference lists. SELECTION CRITERIA Randomised controlled trials (RCTs) which directly compared the effects of ranolazine versus placebo or other anti-anginals in people with stable angina pectoris were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed risk of bias. Estimates of treatment effects were calculated using risk ratios (RR), mean differences (MD) and standardised mean differences (SMD) with 95% confidence intervals (CI) using a fixed-effect model. Where we found statistically significant heterogeneity (Chi² P < 0.10), we used a random-effects model for pooling estimates. Meta-analysis was not performed where we found considerable heterogeneity (I² ≥ 75%). We used GRADE criteria to assess evidence quality and the GRADE profiler (GRADEpro GDT) to import data from Review Manager 5.3 to create 'Summary of findings' tables. MAIN RESULTS We included 17 RCTs (9975 participants, mean age 63.3 years). We found very limited (or no) data to inform most planned comparisons. Summary data were used to inform comparison of ranolazine versus placebo. Overall, risk of bias was assessed as unclear.For add-on ranolazine compared to placebo, no data were available to estimate cardiovascular and non-cardiovascular mortality. We found uncertainty about the effect of ranolazine on: all-cause mortality (1000 mg twice daily, RR 0.83, 95% CI 0.26 to 2.71; 3 studies, 2053 participants; low quality evidence); quality of life (any dose, SMD 0.25, 95% CI -0.01 to 0.52; 4 studies, 1563 participants; I² = 73%; moderate quality evidence); and incidence of non-fatal acute myocardial infarction (AMI) (1000mg twice daily, RR 0.40, 95% CI 0.08 to 2.07; 2 studies, 1509 participants; low quality evidence). Add-on ranolazine 1000 mg twice daily reduced the fervour of angina episodes (MD -0.66, 95% CI -0.97 to -0.35; 3 studies, 2004 participants; I² = 39%; moderate quality evidence) but increased the risk of non-serious adverse events (RR 1.22, 95% CI 1.06 to 1.40; 3 studies, 2053 participants; moderate quality evidence).For ranolazine as monotherapy compared to placebo, we found uncertain effect on cardiovascular mortality (1000 mg twice daily, RR 1.03, 95% CI 0.56 to 1.88; 1 study, 2604 participants; low quality evidence). No data were available to estimate non-cardiovascular mortality. We also found an uncertain effect on all-cause mortality for ranolazine (1000 mg twice daily, RR 1.00, 95% CI 0.81 to 1.25; 3 studies, 6249 participants; low quality evidence), quality of life (1000 mg twice daily, MD 0.28, 95% CI -1.57 to 2.13; 3 studies, 2254 participants; moderate quality evidence), non-fatal AMI incidence (any dose, RR 0.88, 95% CI 0.69 to 1.12; 3 studies, 2983 participants; I² = 50%; low quality evidence), and frequency of angina episodes (any dose, MD 0.08, 95% CI -0.85 to 1.01; 2 studies, 402 participants; low quality evidence). We found an increased risk for non-serious adverse events associated with ranolazine (any dose, RR 1.50, 95% CI 1.12 to 2.00; 3 studies, 947 participants; very low quality evidence). AUTHORS' CONCLUSIONS We found very low quality evidence showing that people with stable angina who received ranolazine as monotherapy had increased risk of presenting non-serious adverse events compared to those given placebo. We found low quality evidence indicating that people with stable angina who received ranolazine showed uncertain effect on the risk of cardiovascular death (for ranolazine given as monotherapy), all-cause death and non-fatal AMI, and the frequency of angina episodes (for ranolazine given as monotherapy) compared to those given placebo. Moderate quality evidence indicated that people with stable angina who received ranolazine showed uncertain effect on quality of life compared with people who received placebo. Moderate quality evidence also indicated that people with stable angina who received ranolazine as add-on therapy had fewer angina episodes but increased risk of presenting non-serious adverse events compared to those given placebo.
Collapse
Affiliation(s)
- Carlos A Salazar
- Universidad Peruana Cayetano HerediaDepartment of MedicineAvenida Honorio Delgado 430San Martin de PorresLimaLimaPeru
| | | | | | - Jhon W Mejia Dolores
- Universidad Nacional Mayor de San MarcosFaculty of MedicineAv. Grau 755LimaLimaPeru
| | | | - César Loza Munárriz
- Universidad Peruana Cayetano HerediaDepartment of NephrologyHospital Cayetano HerediaHonorio Delgado 420LimaPeru31
| | | |
Collapse
|
9
|
Shum AMY, Che H, Wong AOT, Zhang C, Wu H, Chan CWY, Costa K, Khine M, Kong CW, Li RA. A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602448. [PMID: 27805726 DOI: 10.1002/adma.201602448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/02/2016] [Indexed: 06/06/2023]
Abstract
A novel cardiomimetic biohybrid material, termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle, which, along with specific selection criteria, allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Angie M Y Shum
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Hui Che
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Andy On-Tik Wong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Chenzi Zhang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Hongkai Wu
- Biomedical Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
| | - Camie W Y Chan
- Novoheart Ltd., Hong Kong Science Park, Shatin, Hong Kong
| | - Kevin Costa
- Icahn School of Medicine at Mount Sinai, Manhattan, NYC, 10029-5674, USA
| | - Michelle Khine
- Biomedical Engineering, University of California at Irvine, Irvine, CA, 92697-2715, USA
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ronald A Li
- Dr. Li Dak-Sum Research Centre, University of Hong Kong, Pokfulam, Hong Kong
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
10
|
Waks JW, Zimetbaum P. Antiarrhythmic Drug Therapy for Rhythm Control in Atrial Fibrillation. J Cardiovasc Pharmacol Ther 2016; 22:3-19. [DOI: 10.1177/1074248416651722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and affects over 33 million people worldwide. AF is associated with stroke and systemic thromboembolism, unpleasant symptoms and reduced quality of life, heart failure, and increased mortality, and treatment of AF and its complications are associated with significant cost. Antiarrhythmic drugs (AADs) can suppress AF, allowing long-term maintenance of sinus rhythm, and have the potential to relieve symptoms and reverse or prevent adverse effects associated with AF. However, large randomized controlled studies evaluating use of AADs have not demonstrated a clear benefit to maintaining sinus rhythm, and AADs often have significant limitations, including a modest rate of overall success at maintaining sinus rhythm, frequent side effects, and potentially life-threatening toxicities. Although some of the currently available AADs have been available for almost 100 years, better tolerated and more efficacious AADs have recently been developed both for long-term maintenance of sinus rhythm and for chemical cardioversion of AF to sinus rhythm. Advances in automated AF detection with cardiac implantable electronic devices have suggested that AADs might be useful for suppressing AF to allow safe discontinuation of anticoagulation in select patients who are in sinus rhythm for prolonged periods of time. AADs may also have synergistic effects with catheter ablation of AF. This review summarizes the pharmacology and clinical use of currently available AADs for treatment of AF and discusses novel AADs and future directions for rhythm control in AF.
Collapse
Affiliation(s)
- Jonathan W. Waks
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Zimetbaum
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Velayati A, Valerio MG, Shen M, Tariq S, Lanier GM, Aronow WS. Update on pulmonary arterial hypertension pharmacotherapy. Postgrad Med 2016; 128:460-473. [PMID: 27232660 DOI: 10.1080/00325481.2016.1188664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Pulmonary artery hypertension (PAH) refers to several subgroups of disease in which the mean pulmonary artery pressure (mPAP) is elevated to more than 25 mm Hg, pulmonary artery wedge pressure (PAWP) ≤ 15 mmHg, and an elevated pulmonary vascular resistance (PVR) > 3 Wood units as confirmed by right heart catheterization. The prevalence and geographic distribution of PAH vary depending on the type and etiology of the disease. Despite enormous efforts in the research and development of therapeutic agents in the last twenty years, the disease remains relatively incurable and the overall prognosis remains guarded. Median survival for an untreated patient is 2.8 years. In the last three decades, there have been dramatic advances in understanding the molecular mechanisms and signaling pathways involved in the disease, resulting in emerging new treatment strategies. In the following pages, we will review currently approved treatments for PAH, as well as a new generation of investigational drugs.
Collapse
Affiliation(s)
- Arash Velayati
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Marcos G Valerio
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Michael Shen
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Sohaib Tariq
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Gregg M Lanier
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| |
Collapse
|
12
|
|
13
|
Emerging therapies and future directions in pulmonary arterial hypertension. Can J Cardiol 2015; 31:489-501. [PMID: 25840098 DOI: 10.1016/j.cjca.2015.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 11/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex obliterative vascular disease. It remains deadly despite an explosion of basic research over the past 20 years that identified myriads of potential therapeutic targets, few of which have been translated into early phase trials. Despite the agreement over the past decade that its pathogenesis is based on an antiapoptotic and proproliferative environment within the pulmonary arterial wall, and not vasoconstriction, all the currently approved therapies were developed and tested in PAH because of their vasodilatory properties. Numerous potential therapies identified in preclinical research fail to be translated in clinical research. Here we discuss 7 concepts that might help address the "translational gap" in PAH. These include: a need to approach the "pulmonary arteries-right ventricle unit" comprehensively and develop right ventricle-specific therapies for heart failure; the metabolic and inflammatory theories of PAH that put many "diverse" abnormalities under 1 mechanistic roof, allowing the identification of more effective targets and biomarkers; the realization that PAH might be a systemic disease with primary abnormalities in extrapulmonary tissues including the right ventricle, skeletal muscle, immune system, and perhaps bone marrow, shifting our focus toward more systemic targets; the realization that many heritable components of PAH have an epigenetic basis that can be therapeutically targeted; and novel approaches like cell therapy or devices that can potentially improve access to transplanted organs. This progress marks the entrance into a new and exciting stage in our understanding and ability to fight this mysterious deadly disease.
Collapse
|
14
|
Hale SL, Kloner RA. Ranolazine Treatment for Myocardial Infarction? Effects on the Development of Necrosis, Left Ventricular Function and Arrhythmias in Experimental Models. Cardiovasc Drugs Ther 2014; 28:469-75. [DOI: 10.1007/s10557-014-6548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Yar S, Monasky MM, Solaro RJ. Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 2014; 466:1189-97. [PMID: 24488009 DOI: 10.1007/s00424-014-1457-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
In this review, we address the following question: Are modifications at the level of sarcomeric proteins in acquired heart failure early inducers of altered cardiac dynamics and signaling leading to remodeling and progression to decompensation? There is no doubt that most inherited cardiomyopathies are caused by mutations in proteins of the sarcomere. We think this linkage indicates that early changes at the level of the sarcomeres in acquired cardiac disorders may be significant in triggering the progression to failure. We consider evidence that there are rate-limiting mechanisms downstream of the trigger event of Ca(2+) binding to troponin C, which control cardiac dynamics. We discuss new perspectives on how modifications in these mechanisms may be of relevance to redox signaling in diastolic heart failure, to angiotensin II signaling via β-arrestin, and to remodeling related to altered structural rigidity of tropomyosin. We think that these new perspectives provide a rationale for future studies directed at a more thorough understanding of the question driving our review.
Collapse
Affiliation(s)
- Sumeyye Yar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, M/C 901, Chicago, IL, 60612, USA
| | | | | |
Collapse
|
16
|
Impact of ranolazine on clinical outcomes and healthcare resource utilization in patients with refractory angina pectoris. Am J Cardiovasc Drugs 2013; 13:407-12. [PMID: 23873327 DOI: 10.1007/s40256-013-0038-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ranolazine is a novel antianginal medication approved for the treatment of chronic angina. There are only limited data concerning the efficacy of ranolazine in reducing healthcare resource utilization in patients with refractory angina pectoris. OBJECTIVE The primary objective of this analysis was to evaluate the efficacy and safety of ranolazine in refractory angina pectoris. In addition, the impact of ranolazine on healthcare resource utilization was assessed. METHODS Consecutive patients with refractory angina pectoris treated with ranolazine at two cardiology practices in the state of Nebraska were included in this analysis. The Canadian Cardiovascular Society (CCS) angina class and frequency and type of healthcare resource consumption were determined during the 12 months prior to and the 12 months after initiation of ranolazine. RESULTS A total of 150 pts (64 % men) with a mean age of 66 ± 12 years were included in this analysis. All patients had previously undergone coronary revascularization. Nitrates, β-adrenoceptor antagonists (β-blockers), and calcium antagonists (calcium channel blockers) were being used in 83, 97, and 75 % of patients, respectively. During ranolazine treatment, a significant improvement in CCS angina class was observed, with 23 patients improving by one class and no patient experiencing a deterioration in functional class (p = 0.025). A total of 53 side effects occurred in 28 (19 %) patients receiving ranolazine. Of those patients with side effects, four required dose reduction and seven required drug discontinuation. The frequency of clinic visits and emergency room visits was lower during ranolazine treatment, but the differences in frequency were not significant. The number of patients hospitalized and the number of hospitalizations were significantly lower during ranolazine therapy than in the pre-ranolazine study period (p = 0.002). CONCLUSION Ranolazine improved the CCS angina class and reduced hospitalizations over a 12-month follow-up period in a group of patients with difficult-to-treat refractory angina pectoris.
Collapse
|
17
|
Liu Z, Williams RB, Rosen BD. The potential contribution of ranolazine to Torsade de Pointe. J Cardiovasc Dis Res 2013; 4:187-90. [PMID: 24396259 DOI: 10.1016/j.jcdr.2013.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is a novel anti-anginal agent acting through pharmacologic mechanism of inhibition of the late phase of the inward sodium current. In addition, it is a potent inhibitor of rapid delayed rectifier potassium currents, leading to prolongation of the QT interval. However, ranolazine has not yet described to be associated with Torsade de Pointes despite its QT-prolonging effect. In this case report, we describe a patient on ranolazine who developed Torsade de Pointes and discuss about the potential contribution of ranolazine to the development of Torsade de Pointes.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Medicine, MedStar Harbor Hospital, Baltimore, MD 21225, USA
| | - Richard B Williams
- Department of Medicine, MedStar Harbor Hospital, Baltimore, MD 21225, USA
| | - Boaz D Rosen
- Department of Medicine, MedStar Harbor Hospital, Baltimore, MD 21225, USA
| |
Collapse
|
18
|
Prakash A. 62(nd) Annual Scientific Sessions of the American College of Cardiology: 9-11 March 2013; San Francisco, CA, USA. Am J Cardiovasc Drugs 2013; 13:297-300. [PMID: 23821500 DOI: 10.1007/s40256-013-0036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|