1
|
Werner M, Stromer W, Hüning S, Loquai C, Kähler K, Susok L, Nashan D. Supportive pain therapy in dermatology. J Dtsch Dermatol Ges 2025. [PMID: 40401308 DOI: 10.1111/ddg.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2024] [Indexed: 05/23/2025]
Abstract
In conservative dermatology, significant pain frequently presents as an accompanying symptom of complex and severe diseases, severely impacting patients' quality of life. Herpes zoster and pyoderma gangrenosum are two conditions commonly associated with pain. Supportive therapy refers to measures designed to alleviate and improve disease-related symptoms, such as pain, in addition to disease-specific treatments. This review focuses on strategies for targeted pharmacological pain management, addressing contraindications, usage restrictions, dosing, dose adjustments, and potential drug interactions. While nonopioid analgesics are central to pain management, carefully selected opioids are also utilized. However, these may negatively affect patients' well-being and treatment adherence due to side effects like constipation and nausea. As a result, a supportive adjunctive therapy to address these side effects is crucial. The principles of targeted pharmacological pain therapy, consistent with current guidelines and recommendations from professional societies, are outlined in this article for use in dermatological practice.
Collapse
Affiliation(s)
- Markus Werner
- Department of Dermatology, Hospital Dortmund, Hospital of the University of Witten/Herdecke, Dortmund, Germany
| | - Waltraud Stromer
- Department for Anesthesia and Intensive Care, Horn State Hospital, Horn, Austria
| | - Svea Hüning
- Department of Dermatology, Hospital Dortmund, Hospital of the University of Witten/Herdecke, Dortmund, Germany
| | - Carmen Loquai
- Department of Dermatology, Dermatosurgery and Allergology, Hospital Bremen-Ost, Bremen, Germany
| | - Katharina Kähler
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Laura Susok
- Department of Dermatology, Hospital Dortmund, Hospital of the University of Witten/Herdecke, Dortmund, Germany
| | - Dorothée Nashan
- Department of Dermatology, Hospital Dortmund, Hospital of the University of Witten/Herdecke, Dortmund, Germany
- Dermatology Office, Müllheim, Germany
| |
Collapse
|
2
|
Du S, Lin H, Luo Q, Man CL, Lai SH, Ho KF, Leung KMY, Lee PKH. House dust microbiome differentiation and phage-mediated antibiotic resistance and virulence dissemination in the presence of endocrine-disrupting chemicals and pharmaceuticals. MICROBIOME 2025; 13:96. [PMID: 40205515 PMCID: PMC11980161 DOI: 10.1186/s40168-025-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND House dust serves as a reservoir of a diverse array of microbial life and anthropogenic chemicals, both of which can potentially influence the health of occupants, particularly those who spend significant amounts of time at home. However, the effects of anthropogenic chemicals on dust microbiomes remain poorly understood. This study investigated the presence of anthropogenic chemicals in the dust of homes occupied by elderly occupants and explored those chemicals' relationships with dust microbiomes. RESULTS We detected 69 out of 76 analyzed anthropogenic chemicals, including endocrine-disrupting chemicals, non-antibiotic pharmaceuticals, and antibiotics, in at least one house dust sample from 32 residential homes, with concentrations ranging from 2720 to 89,300 ng/g. Some of these detected compounds were pharmaceuticals regularly consumed by the occupants. The dust microbiomes were associated with varying levels of anthropogenic chemicals, forming two distinct clusters, each with unique diversity, taxonomy, metabolic functions, and resistome profiles. Higher concentrations and a greater variety of these chemicals were associated with an increased co-occurrence of antibiotic resistance and virulence genes, as well as an enhanced potential for their transfer through mobile genetic elements. Under these conditions, phages, especially phage-plasmids, facilitated the dissemination of antibiotic resistance and virulence among bacterial populations. CONCLUSIONS The findings indicate that everyday anthropogenic chemicals are important factors associated with the microbes in indoor environments. This underscores the importance of improving household chemical stewardship to reduce the health risks associated with exposure to these chemicals and their effects on indoor microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qiong Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Sze Han Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
3
|
Nemati SS, Dehghan G, Soleymani J, Jouyban A. Advances in electrochemical sensors for naproxen detection: Mechanisms, performance factors, and emerging challenges. Heliyon 2025; 11:e40906. [PMID: 39758385 PMCID: PMC11699440 DOI: 10.1016/j.heliyon.2024.e40906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Naproxen (NAP), a nonsteroidal anti-inflammatory, analgesic, and antipyretic drug, has fewer side effects than similar drugs due to its aryl acetic acid structure. For this reason, it is widely prescribed to manage fever, short-term and long-term pain, and musculoskeletal disorders. However, its use has complications such as changes in kidney function, severe gastrointestinal lesions, and increased bleeding after surgery. In addition, the toxicity of NAP or its metabolites affects the organisms in the ecosystem. Therefore, it is necessary to determine the pharmaceutical quality of produced NAP and measure its amount in living organisms and the environment. Spectroscopy, chromatography, and electrochemical methods have been used to determine NAP. Electrochemical methods have attracted more attention due to their low cost, easy sample preparation, availability, sensitivity, and acceptable results. In addition, using nanomaterials for NAP oxidation results in high surface-to-volume, high available active sites, low cost, and long-term usability with high sensitivity. In this review, electrochemical-based methods for NAP analysis and sensing have been reviewed. Also, the influential factors in NAP identification and evaluation, and their oxidation mechanism have been discussed.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin, 10, Turkey
| |
Collapse
|
4
|
Bano F, Aba Alkhayl FF, Rashid M, Alqethami MG, Alsufyani MO, Alhothali KOR, Hakme MJM, Al-Jarallah AM, Dewangan RP, Husain A. Recent Development of Zolmitriptan Formulation in Migraine Therapy: Production, Metabolism and Pharmaceutical Aspects. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:219-233. [PMID: 39279695 DOI: 10.2174/0118715273306929240820071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.
Collapse
Affiliation(s)
- Farha Bano
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | | | | | | | | | | | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| |
Collapse
|
5
|
Carvalho JDS, Ramadan D, de Carvalho GG, de Paiva Gonçalves V, Pelegrin ÁF, de Assis RP, Brunetti IL, Muscara MN, Spolidorio DM, Spolidorio LC. Repercussions of Long-Term Naproxen Administration on LPS-Induced Periodontitis in Male Mice. J Periodontal Res 2024. [PMID: 39609079 DOI: 10.1111/jre.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
AIMS Chronic periodontitis is the sixth most prevalent disease worldwide and the leading cause of tooth loss in adults. With growing attention on the role of inflammatory and immune responses in its pathogenesis, there is an urgent need to evaluate host-modulatory agents. Non-steroidal anti-inflammatory drugs (NSAIDs) drugs play a crucial role in managing inflammatory conditions. This study examined the repercussions of long-term naproxen use in a periodontal inflammation model known for causing significant inflammation, disrupting epithelial and connective tissue attachment and leading to alveolar bone destruction. METHODS Thirty BALB/c mice were treated with naproxen for 60 days or left untreated. From Day 30, an LPS solution was injected into gingival tissues three times per week for four weeks. This model enables LPS control over the inflammatory stimulus intensity throughout the experimental period, leading to chronic inflammation development involving both innate and adaptive immunity. The liver, stomach and maxillae were submitted to histological analysis. The oxidative damage was determined by measuring lipid peroxidation (LPO) in plasma and gingiva. The activities of myeloperoxidase (MPO), eosinophil peroxidase (EPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and levels of leukotriene B4, the interleukin (IL)-1β, TNF-α, IL-4, IL-5, IL-10, the chemokine CCL11 were also assessed in the gingival tissues. RESULTS The results indicated that none of the groups displayed any indications of liver damage or alterations; however, the NPx treatment led to severe gastric damage. In contrast, the treatment alleviated periodontal inflammation, resulting in a reduction of chronic and acute inflammatory cell infiltration and prevention of connective tissue loss in the gingival tissue. Additionally, the treatment increased the activities of endogenous antioxidant enzymes SOD, CAT and GPx, as well as the IL-10 cytokine, while decreasing the levels of leukotriene B4, TNF-α, IL-4 and IL-5. Furthermore, the activities of MPO, EPO and LPO were reduced in the treated groups. CONCLUSION These results suggest that NPx effectively inhibits periodontal inflammation in an inflammatory periodontal model. However, the harmful gastric effects dramatically limit its long-term use.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Álvaro Formoso Pelegrin
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renata Pires de Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Denise Madalena Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
6
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
7
|
Wilcha R, Afridi SK, Barbanti P, Diener HC, Jürgens TP, Lanteri‐Minet M, Lucas C, Mawet J, Moisset X, Russo A, Sacco S, Sinclair AJ, Sumelahti M, Tassorelli C, Goadsby PJ. Sumatriptan-naproxen sodium in migraine: A review. Eur J Neurol 2024; 31 Suppl 2:e16434. [PMID: 39318200 PMCID: PMC11422667 DOI: 10.1111/ene.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Varied responses to acute migraine medications have been observed, with over one-third (34.5%) of patients reporting insufficient headache relief. Sumatriptan-naproxen sodium, a single, fixed-dose combination tablet comprising sumatriptan 85 mg and naproxen sodium 500 mg, was developed with the rationale of targeting multiple putative mechanisms involved in the pathogenesis of migraine to optimise acute migraine care. METHODS A narrative review of clinical trials investigating sumatriptan-naproxen sodium for both adults and adolescents was performed in March 2024. RESULTS Across a total of 14 clinical trials in nine publications, sumatriptan-naproxen sodium offered greater efficacy for 2-h pain freedom (14/14) and sustained pain-free response up to 24 h (13/14) compared with monotherapy and/or placebo for both adult and adolescent study participants with an acceptable and well-tolerated adverse effect profile. Clinical trial data also demonstrates the effectiveness of sumatriptan-naproxen sodium in participants with allodynia, probable migraine, menstrual-related migraine and those with poor responses to acute, non-specific, migraine medication. CONCLUSIONS Multi-mechanistic therapeutic agents offer an opportunity to optimise acute medications by targeting multiple mediators involved in the pathogenesis of migraine. Sumatriptan-naproxen sodium resulted in greater initial and sustained pain freedom, compared with either sumatriptan, naproxen-sodium and/or placebo, for the treatment of single or multiple attacks of migraine across both adult and adolescent study populations.
Collapse
Affiliation(s)
- Robyn‐Jenia Wilcha
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Shazia K. Afridi
- Neurology DepartmentGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Piero Barbanti
- Headache and Pain UnitIRCCS San Raffaele RomaRomeItaly
- San Raffaele UniversityRomeItaly
| | - Hans Christoph Diener
- Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE)Medical Faculty of the University Duisburg‐EssenEssenGermany
| | - Tim Patrick Jürgens
- Neurologisches ZentrumNeurologische Klinik, KMG Klinikum GüstrowGüstrowGermany
- Klinik und Poliklinik für NeurologieKopfschmerzzentrum Nord‐OstRostockGermany
| | - Michel Lanteri‐Minet
- Pain DépartmentCHU Nice and FHU InovPain Université Côte AzurNiceFrance
- Inserm U1107, Neuro‐Dol, Trigeminal Pain and MigraineUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Christian Lucas
- Pain Clinic, Service de Neurochirurgie, Hôpital SalengroCHU de LilleLilleFrance
| | - Jerôme Mawet
- Emergency Headache Centre, Department of Neurology (J.M.)Lariboisiere Hospital, Assistance Publique des Hopitaux de ParisParisFrance
| | - Xavier Moisset
- CHU de Clermont‐Ferrand, Inserm, Neuro‐Dol, service de neurologieUniversité Clermont‐AuvergneClermont‐FerrandFrance
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, Headache CentreUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Alexandra J. Sinclair
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Department of Neurology, Queen Elizabeth Hospital BirminghamUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Headache Science & Neurorehabilitation CenterIRCCS Mondino FoundationPaviaItaly
| | - Peter J. Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Nesiama E, Mirembe L, Weber K, Isaac S, Trammell D, Obokhare I. Massive Gastrointestinal Bleeding Related to NSAID Use in a Patient with Ileorectal Anastomosis. Case Rep Surg 2024; 2024:4619458. [PMID: 39247149 PMCID: PMC11379504 DOI: 10.1155/2024/4619458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain and inflammation in over 30 million individuals daily. Gastrointestinal bleeding (GIB) associated with NSAID consumption has been well documented in gastric and duodenal bleeding; however, NSAID-associated GIB distal to the duodenum lacks extensive documentation. This report highlights small bowel occult bleeding related to NSAID use in a patient with a surgical history of robotic total colectomy with ileorectal anastomosis completed 1 year prior. In the case of bright red blood per rectum with associated NSAID use, we recommend NSAID cessation followed by an individualized treatment plan, such as upper/lower endoscopy and/or angioembolization.
Collapse
Affiliation(s)
- Esere Nesiama
- University of South Carolina School of Medicine/Prisma Health Department of Orthopaedic Surgery, Columbia, USA
| | - Letisha Mirembe
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| | - Kierra Weber
- University of Florida College of Pharmacy, Jacksonville, USA
| | - Sruthy Isaac
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, USA
| | - Deborah Trammell
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| | - Izi Obokhare
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| |
Collapse
|
10
|
Alsaad HN, Al-Jasani BM, Mahmood AAR, Tahtamouni LH, Saleh KM, AlSakhen MF, Kanaan SI, Yasin SR. Novel 1,3,4-oxadiazole derivatives of naproxen targeting EGFR: Synthesis, molecular docking studies, and cytotoxic evaluation. Drug Dev Res 2024; 85:e22231. [PMID: 38956926 DOI: 10.1002/ddr.22231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.
Collapse
Affiliation(s)
- Hiba N Alsaad
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Baan M Al-Jasani
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Khaled M Saleh
- Department of Basic Dental Sciences, Faculty of Dentistry, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
11
|
Karri J, D'Souza RS, Wang EJ. Cyclooxygenase-2 Selective Nonsteroidal Anti-Inflammatory Drugs in the Chronic Kidney Disease Population: Are They Rational or Reckless? Anesth Analg 2024; 139:235-237. [PMID: 38381665 DOI: 10.1213/ane.0000000000006574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- Jay Karri
- From the Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Eric J Wang
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Basheeruddin M, Qausain S. Significantly Positive Impact of Nonsteroidal Anti-inflammatory Drugs Combined With Osmoprotectant (Osmolytes) in Cancer Treatment. Cureus 2024; 16:e63529. [PMID: 39086782 PMCID: PMC11290388 DOI: 10.7759/cureus.63529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
Osmoprotectant osmolyte and nonsteroidal anti-inflammatory drug (NSAID) coadministration can work synergistically in cancer chemotherapy since most tumors are inflammatory and cancer cells experience osmotic stress. NSAIDs have been shown to inhibit cyclooxygenase (COX) enzymes, which in turn reduces prostaglandin synthesis and prevents inflammation. They also encourage cell death to prevent tumor growth and its spread to other tissues and prevent the construction of new blood vessels, which contributes to the growth of cancer. Taurine belongs to the class of osmolytes since it has been shown to stabilize macromolecular structures and maintain cellular osmotic balance when combined with betaine and glycine. When these drugs are taken together, as opposed to separately, the effectiveness of cancer treatment is increased by increasing cancer cell death and suppressing tumor growth. Notable therapeutic benefits include the reduction of local inflammatory milieu by NSAIDs, which promotes tumor development, and the protection of surviving, normal cells and tissues from treatment-induced damage caused by cancer. By enhancing this synergy, side-effect risk can be decreased and treatment outcomes improved in terms of quality. Put another way, peptides can increase the therapeutic index of NSAIDs in cancer patients by preventing cell damage, which may lessen the gastrointestinal (GI), cardiovascular (CV), and renal side effects of the drug. However, there are drawbacks because using NSAIDs for an extended period of time is linked to serious side effects that call for strict supervision. More research is required because the usefulness and significance of osmolytes in cancer therapy are still very unclear, if not fragmented. In addition, people who live in places with limited resources may find it difficult to afford the possible expenditures associated with osmolytes and selective cyclooxygenase-2 (COX-2) inhibitors. Only the molecular mechanisms of the two drugs' interactions, the appropriate dosages for combination therapy, and clinical trials to validate the efficacy and safety of this dosage should be the focus of future research. The request is inviting because it presents hope for an extremely successful antiviral strategy; nevertheless, in order to implement this approach successfully, it is likely to be necessary to create affordable formulations and scalable solutions that do not necessitate excessive treatment regimen individualization. Due to their complementary capacities to demonstrate anti-inflammatory and cytoprotective effects, Akta and 5-aminosalicylic acid (5-ASA) administration may thus represent a significant advancement in the treatment of cancer.
Collapse
Affiliation(s)
- Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sana Qausain
- Biomedical Sciences, Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Wójcik-Pastuszka D, Stawicka K, Musiał W. Biopolymer-Based Hydrogel Incorporated with Naproxen Sodium and Lidocaine Hydrochloride for Controlled Drug Delivery. Polymers (Basel) 2024; 16:1353. [PMID: 38794546 PMCID: PMC11124777 DOI: 10.3390/polym16101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Sodium hyaluronate (HA) is a natural polysaccharide. This biopolymer occurs in many tissues of living organisms. The regenerating, nourishing, and moisturizing properties as well as the rheological properties of HA enable its application in the pharmaceutical industry as a carrier of medicinal substances. The aim of this work was to assess the release of naproxen sodium (Nap) in the presence of lidocaine hydrochloride (Lid) from the biopolymer-based hydrogels and to determine the respective kinetic parameters of this process. The possible interaction between the HA polysaccharide carrier and the selected drugs was also investigated. Three hydrogels containing Nap and Lid with different concentrations of the biopolymer were prepared. The release of Nap was studied by employing USP apparatus 5. The infrared study and differential scanning calorimetry analysis of physical mixtures and dried formulations were performed. The highest amount of Nap was released from the formulation with the lowest concentration of the biopolymer. The most representative kinetic model that described the dissolution of Nap was obtained through the Korsmeyer-Peppas equation. The release rate constants were in the range of 1.0 ± 0.1 × 10-2 min-n-1.7 ± 0.1 × 10-2 min-n. Lid did not influence the dissolution of Nap from the formulations tested; however, in the desiccated samples of assessed formulations, the interaction between the polysaccharide and both drugs was observed.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wrocław, Poland; (D.W.-P.); (K.S.)
| |
Collapse
|
14
|
Weisman SM, Ciavarra G, Cooper G. What a pain in the … back: a review of current treatment options with a focus on naproxen sodium. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12384. [PMID: 38384362 PMCID: PMC10880755 DOI: 10.3389/jpps.2024.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Non-specific low back pain (LBP) represents a challenging and prevalent condition that is one of the most common symptoms leading to primary care physician visits. While established guidelines recommend prioritizing non-pharmacological approaches as the primary course of action, pharmacological treatments are advised when non-pharmacological approaches are ineffective or based on patient preference. These guidelines recommend non-steroidal anti-inflammatory drugs (NSAIDs) or skeletal muscle relaxers (SMRs) as the first-line pharmacological options for acute or subacute LBP, while NSAIDs are the exclusive first-line pharmacological option for chronic LBP. Although SMRs are generally effective for acute LBP, the available evidence does not support the view that they improve functional recovery, and their comparative efficacy to NSAIDs and other analgesics remains unknown, while studies have shown them to introduce adverse events without significantly reducing LBP. Moreover, opioids continue to be widely prescribed for LBP, despite limited evidence for effectiveness and known risks of addiction and overdose. Broader use of non-opioid pharmacotherapy, including the appropriate use of OTC options, is critical to addressing the opioid crisis. The balance of evidence indicates that NSAIDs have a favorable benefit-risk profile when compared to other available pharmacological treatment options for non-specific LBP, a condition that is primarily acute in nature and well-suited for self-treatment with OTC analgesics. While clinical guidelines do not differentiate between NSAIDs, evidence indicates that OTC naproxen sodium effectively relieves pain across multiple types of pain models, and furthermore, the 14-h half-life of naproxen sodium allows sustained, all day pain relief with reduced patient pill burden as compared to shorter acting options. Choosing the most appropriate approach for managing LBP, including non-pharmacological options, should be based on the patient's condition, severity of pain, potential risks, and individual patient preference and needs.
Collapse
Affiliation(s)
| | | | - Grant Cooper
- Princeton Spine and Joint Center, Princeton, NJ, United States
| |
Collapse
|
15
|
Guillen-Grima F, Guillen-Aguinaga S, Guillen-Aguinaga L, Alas-Brun R, Onambele L, Ortega W, Montejo R, Aguinaga-Ontoso E, Barach P, Aguinaga-Ontoso I. Evaluating the Efficacy of ChatGPT in Navigating the Spanish Medical Residency Entrance Examination (MIR): Promising Horizons for AI in Clinical Medicine. Clin Pract 2023; 13:1460-1487. [PMID: 37987431 PMCID: PMC10660543 DOI: 10.3390/clinpract13060130] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The rapid progress in artificial intelligence, machine learning, and natural language processing has led to increasingly sophisticated large language models (LLMs) for use in healthcare. This study assesses the performance of two LLMs, the GPT-3.5 and GPT-4 models, in passing the MIR medical examination for access to medical specialist training in Spain. Our objectives included gauging the model's overall performance, analyzing discrepancies across different medical specialties, discerning between theoretical and practical questions, estimating error proportions, and assessing the hypothetical severity of errors committed by a physician. MATERIAL AND METHODS We studied the 2022 Spanish MIR examination results after excluding those questions requiring image evaluations or having acknowledged errors. The remaining 182 questions were presented to the LLM GPT-4 and GPT-3.5 in Spanish and English. Logistic regression models analyzed the relationships between question length, sequence, and performance. We also analyzed the 23 questions with images, using GPT-4's new image analysis capability. RESULTS GPT-4 outperformed GPT-3.5, scoring 86.81% in Spanish (p < 0.001). English translations had a slightly enhanced performance. GPT-4 scored 26.1% of the questions with images in English. The results were worse when the questions were in Spanish, 13.0%, although the differences were not statistically significant (p = 0.250). Among medical specialties, GPT-4 achieved a 100% correct response rate in several areas, and the Pharmacology, Critical Care, and Infectious Diseases specialties showed lower performance. The error analysis revealed that while a 13.2% error rate existed, the gravest categories, such as "error requiring intervention to sustain life" and "error resulting in death", had a 0% rate. CONCLUSIONS GPT-4 performs robustly on the Spanish MIR examination, with varying capabilities to discriminate knowledge across specialties. While the model's high success rate is commendable, understanding the error severity is critical, especially when considering AI's potential role in real-world medical practice and its implications for patient safety.
Collapse
Affiliation(s)
- Francisco Guillen-Grima
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Preventive Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
| | - Sara Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Laura Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Department of Nursing, Kystad Helse-og Velferdssenter, 7026 Trondheim, Norway
| | - Rosa Alas-Brun
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Luc Onambele
- School of Health Sciences, Catholic University of Central Africa, Yaoundé 1100, Cameroon;
| | - Wilfrido Ortega
- Department of Surgery, Medical and Social Sciences, University of Alcala de Henares, 28871 Alcalá de Henares, Spain;
| | - Rocio Montejo
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 413 46 Gothenburg, Sweden;
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | | | - Paul Barach
- Jefferson College of Population Health, Philadelphia, PA 19107, USA;
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Interdisciplinary Research Institute for Health Law and Science, Sigmund Freud University, 1020 Vienna, Austria
- Department of Surgery, Imperial College, London SW7 2AZ, UK
| | - Ines Aguinaga-Ontoso
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
16
|
Wei J, Zeng C, Lane NE, Li X, Lei G, Zhang Y. Interactions of Nonsteroidal Antiinflammatory Drugs and Aspirin and Risk of Cardiovascular Disease in Patients With Osteoarthritis. Am J Epidemiol 2023; 192:1432-1448. [PMID: 37073405 DOI: 10.1093/aje/kwad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
Nonsteroidal antiinf lammatory drugs (NSAIDs) remain the mainstay of the pharmacologic management for relieving osteoarthritis pain, and low-dose aspirin is often prescribed to osteoarthritis patients who are at high risk of cardiovascular disease (CVD). We conducted cohort studies using data from The Health Improvement Network (THIN) database (2000-2019) to assess whether the relationship of initiation of naproxen or ibuprofen vs. initiation of other NSAIDs (excluding both naproxen and ibuprofen), respectively, to the risk of CVD was modified by coprescription of low-dose aspirin among the participants with osteoarthritis. Among participants without coprescription of aspirin, the risk of CVD was lower in naproxen initiators (10.3/1000 person-years) than in other NSAIDs initiators (13.2/1000 person-years; hazard ratio = 0.71, 95% confidence interval: 0.60, 0.85). Among participants with coprescription of aspirin, however, the risk of CVD was higher among naproxen initiators (36.9/1000 person-years) than that among other NSAIDs initiators (34.8/1000 person-years; hazard ratio = 1.48, 95% confidence interval: 1.12, 1.84). The association was significantly modified by coprescription of aspirin (P < 0.001). Similar findings were observed in the association of initiation of ibuprofen vs. other NSAIDs with the risk of CVD, which was significantly modified by coprescription of aspirin (P < 0.001). These findings suggest that osteoarthritis patients and clinicians should be aware of the potential CVD risk of concurrently taking naproxen or ibuprofen and low-dose aspirin.
Collapse
|
17
|
Agrawal G, Aswath S, Laha A, Ramakrishna S. Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Adv Wound Care (New Rochelle) 2023; 12:529-543. [PMID: 36680757 DOI: 10.1089/wound.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed drugs to treat inflammation and related ailments. In recent years, loading these drugs onto nanodevices like nanoparticles, nanofibers, etc. as a drug delivery system has gained momentum due to its desirable properties and advantages. The purpose of this review is to examine the existing research on the potential and novel use of nanofiber-assisted delivery of NSAIDs. Recent Advances: Electrospun nanofibers have recently garnered considerable attention from researchers in a variety of sectors. They have proved to be promising vehicles for drug delivery systems because of their exceptional and favorable features like prolonged drug release, controllable porosity, and high surface area. In this article, various polymers and even combinations of polymers loaded with single or multiple drugs were analyzed to achieve the desired drug release rates (burst, sustained, and biphasic) from the electrospun nanofibers. Critical Issues: The administration of these medications can induce major adverse effects, causing patients discomfort. Thus, encapsulating these drugs within electrospun nanofibers helps to reduce the severity of side effects while also providing additional benefits such as targeted and controlled drug release, reduced toxicity, and long-lasting effects of the drug with lower amounts of administration. Future Directions: This review covers previous research on the delivery of NSAIDs using electrospun nanofibers as the matrix. Also, this study intends to aid in the development of enhanced drug delivery systems for the treatment of inflammation and related issues.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Surabhi Aswath
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
- Department of Chemical Engineering, Calcutta Institute of Technology, Howrah, India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Nedeljković N, Dobričić V, Bošković J, Vesović M, Bradić J, Anđić M, Kočović A, Jeremić N, Novaković J, Jakovljević V, Vujić Z, Nikolić M. Synthesis and Investigation of Anti-Inflammatory Activity of New Thiourea Derivatives of Naproxen. Pharmaceuticals (Basel) 2023; 16:ph16050666. [PMID: 37242450 DOI: 10.3390/ph16050666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the study was a synthesis and investigation of the dose-dependent anti-inflammatory effect of new thiourea derivatives of naproxen with selected aromatic amines and esters of aromatic amino acids. The results of the in vivo study indicate that derivatives of m-anisidine (4) and N-methyl tryptophan methyl ester (7) showed the most potent anti-inflammatory activity four hours after injection of carrageenan, with the percentage of inhibition of 54.01% and 54.12%, respectively. In vitro assays of COX-2 inhibition demonstrated that none of the tested compounds achieved 50% inhibition at concentrations lower than 100 µM. On the other hand, the aromatic amine derivatives (1-5) accomplished significant inhibition of 5-LOX, and the lowest IC50 value was observed for compound 4 (0.30 μM). High anti-edematous activity of compound 4 in the rat paw edema model, together with potent inhibition of 5-LOX, highlight this compound as a promising anti-inflammatory agent.
Collapse
Affiliation(s)
- Nikola Nedeljković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marina Vesović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marijana Anđić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Aleksandar Kočović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Jeremić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- 1st Moscow State Medical, University IM Sechenov, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Jovana Novaković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljević
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Zorica Vujić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Miloš Nikolić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
19
|
Akolkar SV, Shaikh MH, Bhalmode MK, Pawar PU, Sangshetti JN, Damale MG, Shingate BB. Click chemistry inspired syntheses of new amide linked 1,2,3-triazoles from naphthols: biological evaluation and in silico computational study. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [PMCID: PMC10062688 DOI: 10.1007/s11164-023-05008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In search of new active molecules, a small focused library of new 1,2,3-triazoles derived from naphthols were efficiently prepared via the click chemistry approach. The synthesized triazole derivatives were evaluated for their antifungal, antioxidant and antitubercular activities. Furthermore, to rationalize the observed biological activity data, the molecular docking study has also been carried out against the active site of cytochrome P450 lanosterol 14α-demethylase of C. albicans to understand the binding affinity and binding interactions of enzyme and synthesized derivatives, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of the in vitro and In Silico study suggest that the 1,2,3-triazole derivatives may possess the ideal structural requirements for the further development of novel therapeutic agents.
Collapse
Affiliation(s)
- Satish V. Akolkar
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| | - Mubarak H. Shaikh
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra 414001 India
| | - Mininath K. Bhalmode
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| | - Prabhakar U. Pawar
- grid.417959.70000 0004 1764 2413Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008 India
| | | | - Manoj G. Damale
- Department of Pharmaceutical Chemistry, Srinath College of Pharmacy, Aurangabad, Maharashtra 431136 India
| | - Bapurao B. Shingate
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| |
Collapse
|
20
|
Rivera P, Villegas C, Cabezas R, Pérez B, Torres A, de Dicastillo CL, Garrido L, Galvez P, Araya C, Romero J. Development of PLA suture materials by extrusion, electrospinning and supercritical CO2 impregnation of ibuprofen and naproxen. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Gestational NSAIDs distinctly reprogram cardiac injury in preeclamptic rats: Roles of cyclooxygenase, apoptotic and autophagic trails. Life Sci 2022; 310:121130. [DOI: 10.1016/j.lfs.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
22
|
Babasahib SK, Born RW, Raghavendra NM. Trans ethosomal hybrid composites of naproxen-sulfapyridine in hydrogel carrier: anti-inflammatory response in complete Freund's adjuvant induced arthritis rats. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:59-70. [PMID: 35261304 DOI: 10.1080/21691401.2022.2047712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current treatment for Rheumatoid arthritis (RA) utilizes Disease-modifying antirheumatic drugs, non-steroidal anti-inflammatory drugs or its combination, to decrease joint inflammation. In the present study, naproxen (NAP) and sulfapyridine (SULF) ethosomes were prepared by a thin-film hydration technique using PL90G and cholesterol, later crosslinked with carbopol®934. The ethosomes and ethosomal hydrogel were evaluated for rheological properties, physico-chemical analysis, in vitro and in vivo study. The results show, NAP and SULF ethosomes exhibited an average vesicle size between 251.1 ± 1.80-343.5 ± 3.23 nm and 269.0 ± 1.17-358.8 ± 1.22 nm, respectively, with good stability (zeta potential > 30 mV) and polydispersity index. Differential scanning calorimeter and Fourier transform infrared studies reveal no significant changes in the drug properties of ethosomes. Transmission electron microscopy analysis discloses spherical shape vesicles below 200 nm. The entrapment efficiency of NAP and SULF ethosomes was above 66%, and NAP-SULF ethosomes-hydrogel (EH) exhibited a sustained release effect (>8 h). In vivo studies on NAP-SULF EH shows significant inhibition of inflammation (84.63%), with less paw volume (0.1935 ± 0.08 ml) on induced arthritis Albino Wistar rats, (p < .01). NAP-SULF EH was stable at 25 °C ± 0.5 for 3-months. To conclude, a hybrid composite of NAP-SULF in hydrogel carrier prevents inflammation effectively, and could be novel for trans delivery of drugs in RA.
Collapse
Affiliation(s)
- Sajeev Kumar Babasahib
- Centre for Nanoscience and Drug Development, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Roaddy Well Born
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | | |
Collapse
|
23
|
Dundar R, Muluk NB, Sezer CV, Kaya F, Kutlu HM, Cingi C. A safety investigation into topical effects of naproxen sodium on nasal epithelial cells and potential toxicity in local application. Am J Otolaryngol 2022; 44:103689. [DOI: 10.1016/j.amjoto.2022.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
|
24
|
Kowalkińska M, Sikora K, Łapiński M, Karczewski J, Zielińska-Jurek A. Non-toxic fluorine-doped TiO2 nanocrystals from TiOF2 for facet-dependent naproxen degradation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
The Role of Probiotic Bacillus Spores and Amino Acids with Immunoglobulins on a Rat Enteropathy Model. Biomedicines 2022; 10:biomedicines10102508. [PMID: 36289770 PMCID: PMC9599762 DOI: 10.3390/biomedicines10102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are some of the most widely used drugs due to their anti-inflammatory, analgesic and antipyretic pharmacological effects. Gastrointestinal side effects are some of the most severe and frequent side effects of NSAIDs. These depend on the balance of the gut microbiome, the abundance of Gram-negative bacteria, and the amount of lipopolysaccharide released. Therefore, restoring or improving gut bacteria balance with probiotic supplements could prove to be an adjuvant therapy against mild NSAID-induced enteropathy. Twenty-five Wistar albino male rats were divided into five groups. The negative control group was administered carboxymethylcellulose and the positive control group diclofenac (DIC), 8 mg/kg for 7 days, which represented the enteropathy model. Treatment groups consisted of a combination of pro-biotic spores (MSB), amino acids and immunoglobulins supplement (MM), which were also administered for 7 days. We analyzed hepatic injury markers (AST, ALT) and creatinine, and inflammatory markers, IL-6, TNF-α, PGE2, iNOS, as well as total antioxidant capacity. The results obtained in the present study suggest that the modulation of the intestinal microbiota by administration of probiotics (Bacillus spores), alone or in combination with immunoglobulins and amino acids, represents an attractive therapy for the prevention of NSAID-induced enteropathy.
Collapse
|
26
|
Fabrication and Characterizations of Pharmaceutical Emulgel Co-Loaded with Naproxen-Eugenol for Improved Analgesic and Anti-Inflammatory Effects. Gels 2022; 8:gels8100608. [PMID: 36286109 PMCID: PMC9602183 DOI: 10.3390/gels8100608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to fabricate and characterize a pharmaceutical emulgel co-loaded with naproxen/eugenol for transdermal delivery to improve the analgesic and anti-inflammatory effects and to eliminate GIT adverse reactions. Emulgel was prepared using a slow emulsification method and evaluated for physical appearance, thermodynamic stability, viscosity, pH, spreadability, extrudability, in-vitro drug release, drug content, ex-vivo permeation, drug retention studies and in-vivo studies. The emulgel exhibited good physical attributes, being thermodynamically stable with no phase separation, having excellent homogeneity, and pH 5.5 to 6.5. Slight changes in viscosity, spreadability and extrudability with respect to high temperature were observed (p > 0.05). The drug content was 96.69 ± 1.18% and 97.24 ± 1.27% for naproxen and eugenol, respectively. The maximum release of naproxen after 12 h was 85.14 ± 1.11%, whereas eugenol was 86.67 ± 1.23% from emulgel following anomalous non-Fickian mechanism. The maximum % permeation of naproxen across skin was 78.5 ± 1.30, whereas maximum % permeation of eugenol was 83.7 ± 1.33 after 12 h. The skin retention of eugenol and naproxen was 8.52 ± 0.22% and 6.98 ± 0.24%, respectively. The optimized emulgel inhibited the carrageenan induced paw edema. The pain reaction times of optimized emulgel and standard marketed product (Voltral®) were 11.16 ± 0.17 and 10.36 ± 0.47, respectively, with no statistically significant difference (p > 0.05). This study concluded that transdermal delivery of naproxen-eugenol emulgel synergized the anti-inflammatory and analgesic effects of naproxen and eugenol.
Collapse
|
27
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
28
|
Wojcieszyńska D, Guzik H, Guzik U. Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155317. [PMID: 35452725 PMCID: PMC9015952 DOI: 10.1016/j.scitotenv.2022.155317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
From 2019, life in the world has mainly been determined by successive waves of the COVID-19 epidemic. During this time, the virus structure, action, short- and long-term effects of the infection were discovered, and treatments were developed. This epidemic undoubtedly affected people's lives, but increasing attention is also being paid to the effects of the epidemic on the environment. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, a global scoping review of peer-reviewed information has been conducted on the use of over-the-counter non-steroidal anti-inflammatory drugs in the treatment of symptoms of SARS-CoV-2 infections and their positive and negative effects on the human body, the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on aquatic organisms, and their adverse effects on non-target organisms. The literature from 1998 to 2021 was analysed using the Scopus®, Web of Science™ (WoS) and Google Scholar databases. As non-steroidal anti-inflammatory drugs place a heavy burden on the environment, all reports of the presence of these drugs in the environment during the pandemic period have been thoroughly analysed. Of the 70 peer-reviewed records within the scope, only 14% (n = 10) focussed on the analysis of non-steroidal anti-inflammatory drugs concentrations in wastewater and surface waters during the pandemic period. The percentage of these works indicates that it is still an open topic, and this issue should be supplemented with further reports in which the results obtained during the pandemic, which has been going on for several years, will be published. The authors hope this review will inspire scientists to investigate the problem of non-steroidal anti-inflammatory drugs in the environment to protect them for the next generation.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Henryk Guzik
- Department of Orthopaedics and Traumatology, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
29
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
30
|
Alagumalai K, Musuvadhi Babulal S, Chen SM, Shanmugam R, Yesuraj J. Electrochemical evaluation of naproxen through Au@f-CNT/GO nanocomposite in environmental water and biological samples. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Nematollahzadeh A, Mirzaei-Kalar Z, Abolhasani H, Babapoor A. Synthesize and multi-spectroscopic studies of zinc-naproxen nanodrug as DNA intercalator agent. Anal Biochem 2021; 642:114454. [PMID: 34774837 DOI: 10.1016/j.ab.2021.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
The zinc-naproxen complex as a nano-drug (NanoD) was synthesized successfully via fast and effective ultrasound-assisted processes. The chemicophysical properties of the NanoD were determined using FT-IR, XRD, SEM, and EDX mapping analyses. The results confirmed the formation of the 55 nm NanoD laminates. The interaction of the obtained NanoD with calf thymus deoxyribonucleic acid (CT-DNA) was studied as well. Structural and topography changes of DNA in interaction with the NanoD were investigated by atomic force microscopy (AFM). The results of electronic absorption spectroscopy, the DNA-viscosity studies, and competition fluorescence spectroscopy showed that CT-DNA binds to the NanoD through the intercalative binding mode. The data of AFM analysis indicated swollen CT-DNA upon interaction with the NanoD. The in vitro investigation of cytotoxicity of the NanoD on HT-29 and Hep G2 cancer cells demonstrated high cytotoxicity activity of the NanoD than that of cisplatin in HT-29 cell line, especially at lower concentrations.
Collapse
Affiliation(s)
- Ali Nematollahzadeh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Zeinab Mirzaei-Kalar
- Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center and Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
32
|
Komogortsev AN, Lichitsky BV, Melekhina VG, Nasyrova DI, Milyutin CV. Photoinduced 6π-Electrocyclization of a 1,3,5-Hexatriene System Containing an Allomaltol Fragment. J Org Chem 2021; 86:15345-15356. [PMID: 34637303 DOI: 10.1021/acs.joc.1c01902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For the first time, the possibility of photocyclization of the 1,3,5-hexatriene system containing a fragment of allomaltol was demonstrated. A preparative method for the synthesis of previously unknown benzo[5,6]chromeno[8,7-d]oxazole-2,7(3H)-diones was developed based on the investigated photoreaction. A distinctive feature of this approach is the modification of the starting terarylenes aimed at blocking the competitive process leading to side reactions of the pyranone fragment. It was shown that the proposed photocyclization of substituted oxazol-2-ones can be used for the photogeneration of biologically active alcohols and various acids. The structure of one of the cyclization products was determined by X-ray diffraction.
Collapse
Affiliation(s)
- Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Valeriya G Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Darina I Nasyrova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Constantine V Milyutin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| |
Collapse
|
33
|
Wu Y, Hao R, Lan B, Mu Y, Dang F, Wang R. The protective effects of naproxen against interleukin-1β (IL-1β)- induced damage in human umbilical vein endothelial cells (HUVECs). Bioengineered 2021; 12:5361-5372. [PMID: 34427537 PMCID: PMC8806478 DOI: 10.1080/21655979.2021.1955560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used medications in the world. Naproxen is an NSAID with relatively low selectivity for cyclooxygenase-2 (COX-2), thereby having decreased risk for cardiovascular (CV) events. However, it is unclear whether naproxen might provide protection against atherosclerosis, an underlying cause of numerous cardiovascular diseases (CVDs). In the present study, we exposed human umbilical vein endothelial cells to interleukin-1β (IL-1β), a key cytokine involved in atherogenesis, with or without naproxen. Our findings indicate that naproxen could protect against IL-1β-induced damage by improving cell viability and preventing cell death. Additionally, naproxen suppressed the expression of the cytokines IL-6, IL-12, and tumor necrosis factor-α (TNF-α), and downregulated the expression of vascular endothelial growth factor (VEGF) and tissue factor (TF) induced by IL-1β. Importantly, naproxen also inhibited the attachment of monocytes to endothelial cells, which was achieved through Krüppel-like factor 6 (KLF6)-mediated reduced expression of intracellular adhesion molecule-1 (ICAM-1) and E-selectin. These findings suggest that naproxen may aid in the prevention of atherosclerosis by exerting cardioprotective effects beyond low COX-2-selectivity.
Collapse
Affiliation(s)
- Yuliang Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruina Hao
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Beidi Lan
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiping Mu
- Department of Medical Information Management Office, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruitao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Moradi M, Sayari H, Martinez F, Zhao H, Hanaee J, Rahimpour E, Jouyban A. Dissolution thermodynamic study of naproxen in the mixtures of ethylene glycol and water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
36
|
Naproxen inhibits spontaneous lung adenocarcinoma formation in Kras G12V mice. Neoplasia 2021; 23:574-583. [PMID: 34091121 PMCID: PMC8187931 DOI: 10.1016/j.neo.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Naproxen inhibits the adenocarcinoma by 64% in KrasG12V mice. Naproxen inhibits serum PGE2/CXCR4 levels in KrasG12V mice. Naproxen inhibits the progression of adenocarcinoma in KrasG12V mice.
Lung cancer is the leading cause of cancer related deaths worldwide. The present study investigated the effects of naproxen (NSAID) on lung adenocarcinoma in spontaneous lung cancer mouse model. Six-week-old transgenic KrasG12V mice (n = 20; male + female) were fed modified AIN-76A diets containing naproxen (0/400 ppm) for 30 wk and euthanized at 36 wk of age. Lungs were evaluated for tumor incidence, multiplicity, and histopathological stage (adenoma and adenocarcinoma). Lung tumors were noticeable as early as 12 wk of age exclusively in the KrasG12V mice. By 36 wk age, 100% of KrasG12V mice on control diet developed lung tumors, mostly adenocarcinomas. KrasG12V mice fed control diet developed 19.8 ± 0.96 (Mean ± SEM) lung tumors (2.5 ± 0.3 adenoma, 17.3 ± 0.7 adenocarcinoma). Administration of naproxen (400 ppm) inhibited lung tumor multiplicity by ∼52% (9.4 ± 0.85; P < 0001) and adenocarcinoma by ∼64% (6.1 ± 0.6; P < 0001), compared with control-diet-fed mice. However, no significant difference was observed in the number of adenomas in either diet, suggesting that naproxen was more effective in inhibiting tumor progression to adenocarcinoma. Biomarker analysis showed significantly reduced inflammation (COX-2, IL-10), reduced tumor cell proliferation (PCNA, cyclin D1), and increased apoptosis (p21, caspase-3) in the lung tumors exposed to naproxen. Decreased serum levels of PGE2 and CXCR4 were observed in naproxen diet fed KrasG12V mice. Gene expression analysis of tumors revealed a significant increase in cytokine modulated genes (H2-Aa, H2-Ab1, Clu), which known to further modulate the cytokine signaling pathways. Overall, the results suggest a chemopreventive role of naproxen in inhibiting spontaneous lung adenocarcinoma formation in KrasG12V mice.
Collapse
|
37
|
Zheng Y, Zhao Y, Tao S, Li X, Cheng X, Jiang G, Wan X. Green Esterification of Carboxylic Acids Promoted by
tert
‐Butyl Nitrite. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| |
Collapse
|
38
|
Sorribes-Soriano A, Esteve-Turrillas FA, Armenta S, Herrero-Martínez JM. Dual mixed-mode poly (vinylpyridine-co-methacrylic acid-co-ethylene glycol dimethacrylate)-based sorbent for acidic and basic drug extraction from oral fluid samples. Anal Chim Acta 2021; 1167:338604. [PMID: 34049628 DOI: 10.1016/j.aca.2021.338604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
In this study, a dual mixed-mode polymer sorbent was prepared via one-step thermally initiated polymerization of 4-vinylpyridine (VP), methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) for the solid-phase extraction (SPE) of basic and acidic drugs. The use of VP and MAA as ionizable functional monomers allowed the tailoring of ion-exchange and hydrophobic features of the polymer. The obtained polymer was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Next, the retention behavior of dual mixed-mode polymer towards basic and acidic drugs was investigated. Moreover, the practical capability of this novel material was tested for the extraction of relevant drugs such as cocaine, 3-methylmethcathinone, and diazepam in oral fluid samples. Recovery values (at different spiked levels in blank oral fluid samples), ranging from 69 to 99%, and limits of detection (LODs), between 0.10 and 0.25 μg L-1, were obtained.
Collapse
Affiliation(s)
- Aitor Sorribes-Soriano
- Department of Analytical Chemistry, Universitat de València, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | | | - Sergio Armenta
- Department of Analytical Chemistry, Universitat de València, 50th Dr. Moliner St., 46100, Burjassot, Spain.
| | | |
Collapse
|
39
|
Harris ZM, Antin-Ozerkis D. An 84-Year-Old Physician With Progressive Dyspnea and Bilateral Upper Lobe Opacities. Chest 2021; 159:e325-e329. [PMID: 33965157 DOI: 10.1016/j.chest.2020.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 11/18/2022] Open
Abstract
CASE PRESENTATION An 84-year-old physician was seen in the pulmonary clinic with 10 days of progressive exertional dyspnea, night sweats, and dry cough. For the past 5 months, he had been taking ibuprofen for lumbar radiculopathy from spinal stenosis. Ten days earlier, ibuprofen was switched to naproxen 250 mg twice daily because of its longer half-life. He denied fever, weight loss, rash, dysphagia, proximal muscle weakness, wheeze, sinus congestion, and peripheral numbness/tingling. Medical history included paroxysmal atrial fibrillation, hypertension, Hashimoto's thyroiditis, and OSA. Long-term medications included aspirin, flecainide, atorvastatin, amlodipine, levothyroxine, and candesartan. He was a lifelong nonsmoker. There was no history of recent travel.
Collapse
Affiliation(s)
- Zachary M Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT.
| | - Danielle Antin-Ozerkis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
40
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
41
|
Han Mİ, Küçükgüzel ŞG. Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives. Mini Rev Med Chem 2021; 20:1300-1310. [PMID: 32368976 DOI: 10.2174/1389557520666200505124922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
This review explains the effects of naproxen and the naproxen moiety in important biological activities. Naproxen, 2-(6-methoxynaphthalen-2-yl)propionic acid, is one of the most utilized propionic acid derivatives to the cure of many injuries or pains. Naproxen is a non-steroidal antiinflammatory drug (NSAID), which is generally used among the NSAIDs. Even though it has gastrointestinal side effects, naproxen has been safely used for many years because of the good cardiovascular sight. In the past years, except for anti-inflammatory effects, other pharmacological activities of naproxen, especially anticancer and antimicrobial activities, gain the attention of researchers. Naproxen shows its activity by inhibiting the COX-2 enzyme. There is significant interest in the possibility that COX-2 inhibitors might retard or prevent the development of various cancer types, which is often characterized by COX-2 expression. The activities of both naproxen and new molecules derived from naproxen were frequently investigated.
Collapse
Affiliation(s)
- M İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Talas, 38030, Kayseri, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Basibuyuk, 34854, Istanbul, Turkey
| |
Collapse
|
42
|
García-Martín E, García-Menaya JM, Esguevillas G, Cornejo-García JA, Doña I, Jurado-Escobar R, Torres MJ, Blanca-López N, Canto G, Blanca M, Laguna JJ, Bartra J, Rosado A, Fernández J, Cordobés C, Agúndez JAG. Deep sequencing of prostaglandin-endoperoxide synthase (PTGE) genes reveals genetic susceptibility for cross-reactive hypersensitivity to NSAID. Br J Pharmacol 2021; 178:1218-1233. [PMID: 33450044 DOI: 10.1111/bph.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cross-reactive hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) is a relatively common adverse drug event caused by two or more chemically unrelated drugs and that is attributed to inhibition of the COX activity, particularly COX-1. Several studies investigated variations in the genes coding for COX enzymes as potential risk factors. However, these studies only interrogated a few single nucleotide variations (SNVs), leaving untested most of the gene sequence. EXPERIMENTAL APPROACH In this study, we analysed the whole sequence of the prostaglandin-endoperoxide synthase genes, PTGS1 and PTGS2, including all exons, exon-intron boundaries and both the 5' and 3' flanking regions in patients with cross-reactive hypersensitivity to NSAIDs and healthy controls. After sequencing analysis in 100 case-control pairs, we replicated the findings in 540 case-control pairs. Also, we analysed copy number variations for both PTGS genes. KEY RESULTS The most salient finding was the presence of two PTGS1 single nucleotide variations, which are significantly more frequent in patients than in control subjects. Patients carrying these single nucleotide variations displayed a significantly and markedly lower COX-1 activity as compared to non-carriers for both heterozygous and homozygous patients. CONCLUSION AND IMPLICATIONS Although the risk single nucleotide variations are present in a small proportion of patients, the strong association observed and the functional effect of these single nucleotide variations raise the hypothesis of genetic susceptibility to develop cross-reactive NSAID hypersensitivity in individuals with an impairment in COX-1 enzyme activity.
Collapse
Affiliation(s)
- Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, University of Extremadura. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jesús M García-Menaya
- Allergy Service, Badajoz University Hospital. ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - Gara Esguevillas
- University Institute of Molecular Pathology Biomarkers, University of Extremadura. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - José A Cornejo-García
- Research Laboratory, IBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Inmaculada Doña
- Allergy Unit, IBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, IBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - María J Torres
- Allergy Unit, IBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Natalia Blanca-López
- Allergy Service, ARADyAL Instituto de Salud Carlos III, Infanta Leonor University Hospital, Madrid, Spain
| | - Gabriela Canto
- Allergy Service, ARADyAL Instituto de Salud Carlos III, Infanta Leonor University Hospital, Madrid, Spain
| | - Miguel Blanca
- Allergy Service, ARADyAL Instituto de Salud Carlos III, Infanta Leonor University Hospital, Madrid, Spain
| | - José J Laguna
- Allergy Unit and Allergy-Anaesthesia Unit, ARADyAL Instituto de Salud Carlos III, Hospital Central Cruz Roja, Madrid, Spain
| | - Joan Bartra
- Allergy Section, Pneumology Department, Hospital Clinic, ARADyAL Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain
| | - Ana Rosado
- Allergy Service, Alcorcón Hospital, Madrid, Spain
| | - Javier Fernández
- Allergy Unit, ARADyAL Instituto de Salud Carlos III, Regional University Hospital, Alicante, Spain
| | - Concepción Cordobés
- Allergy Service, Badajoz University Hospital. ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, University of Extremadura. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
43
|
Martí-Centelles R, Dolz-Pérez I, De la O J, Ontoria-Oviedo I, Sepúlveda P, Nebot VJ, Vicent MJ, Escuder B. Two-Component Peptidic Molecular Gels for Topical Drug Delivery of Naproxen. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rosa Martí-Centelles
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Castelló 12071, Spain
| | - Irene Dolz-Pérez
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Jaciel De la O
- Polypeptide Therapeutic Solutions S.L., 46980 Paterna, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain
| | - Vicent J. Nebot
- Polypeptide Therapeutic Solutions S.L., 46980 Paterna, Spain
| | - Maria J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Beatriu Escuder
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Castelló 12071, Spain
| |
Collapse
|
44
|
Hansildaar R, Vedder D, Baniaamam M, Tausche AK, Gerritsen M, Nurmohamed MT. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. THE LANCET. RHEUMATOLOGY 2021; 3:e58-e70. [PMID: 32904897 PMCID: PMC7462628 DOI: 10.1016/s2665-9913(20)30221-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased risk of cardiovascular morbidity and mortality in rheumatoid arthritis and gout has been increasingly acknowledged in past decades, with accumulating evidence that gout, just as with rheumatoid arthritis, is an independent cardiovascular risk factor. Although both diseases have a completely different pathogenesis, the underlying pathophysiological mechanisms in systemic inflammation overlap to some extent. Following the recognition that systemic inflammation has an important causative role in cardiovascular disease, anti-inflammatory therapy in both conditions and urate-lowering therapies in gout are expected to lower the cardiovascular burden of patients. Unfortunately, much of the existing data showing that urate-lowering therapy has consistent beneficial effects on cardiovascular outcomes in patients with gout are of low quality and contradictory. We will discuss the latest evidence in this respect. Cardiovascular disease risk management for patients with rheumatoid arthritis and gout is essential. Clinical guidelines and implementation of cardiovascular risk management in daily clinical practice, as well as unmet needs and areas for further investigation, will be discussed.
Collapse
Affiliation(s)
- Romy Hansildaar
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam and Reade, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Daisy Vedder
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam and Reade, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Milad Baniaamam
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam and Reade, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Anne-Kathrin Tausche
- Department of Rheumatology, University Clinic Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - Martijn Gerritsen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam and Reade, Amsterdam, Netherlands
| | - Michael T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam and Reade, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
45
|
Al-Zoubi N, Odeh F, Partheniadis I, Gharaibeh S, Nikolakakis I. Spray drying of naproxen and naproxen sodium for improved tableting and dissolution - physicochemical characterization and compression performance. Pharm Dev Technol 2020; 26:193-208. [PMID: 33211618 DOI: 10.1080/10837450.2020.1853769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, the tabletability and dissolution of spray-dried forms of naproxen and its sodium salt were compared with those of unprocessed drugs. Solutions of naproxen or naproxen sodium alone or with HPMC (5% w/w of drug content) were spray dried. Scanning electron micrographs showed that naproxen sodium spray-dried particles were spherical, whereas those of naproxen were non-spherical but isodiametric. Powder x-ray diffraction and thermal analysis indicated that co-spray drying with HPMC resulted in reduced crystallinity of naproxen and higher naproxen sodium dihydrate content. FTIR and Raman analysis showed shifting, merging or elimination of bands in the spectra of the co-spray dried products signifying solid-state alterations. When mixed with suitable processing aids (7% w/w), all co-spray dried powders produced satisfactory tablets in the pressure range 73-295 MPa. Conversely, physical mixtures of naproxen compressed with the same aids failed tableting, whereas naproxen sodium produced weak tablets. Dissolution tests showed significant improvement for co-spray dried drugs tablets. Therefore, since the large therapeutic doses of naproxen and sodium naproxen limit the use of tableting aids, the improved compaction and dissolution performance of the spray-dried forms may be a formulation alternative.
Collapse
Affiliation(s)
- Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Faten Odeh
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
46
|
Chang RW, Tompkins DM, Cohn SM. Are NSAIDs Safe? Assessing the Risk-Benefit Profile of Nonsteroidal Anti-inflammatory Drug Use in Postoperative Pain Management. Am Surg 2020; 87:872-879. [DOI: 10.1177/0003134820952834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this article, we review controversies in assessing the risk of serious adverse effects caused by administration of nonsteroidal anti-inflammatory drugs (NSAIDs). Our focus is upon NSAIDs used in short courses for the management of acute postoperative pain. In our review of the literature, we found that the risks of short-term NSAID use may be overemphasized. Specifically, that the likelihood of renal dysfunction, bleeding, nonunion of bone, gastric complications, and finally, cardiac dysfunction do not appear to be significantly increased when NSAIDs are used appropriately after surgery. The importance of this finding is that in light of the opioid epidemic, it is crucial to be aware of alternative analgesic options that are safe for postoperative pain control.
Collapse
Affiliation(s)
| | - Danielle M. Tompkins
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | |
Collapse
|
47
|
Repositioned Drugs for Chagas Disease Unveiled via Structure-Based Drug Repositioning. Int J Mol Sci 2020; 21:ijms21228809. [PMID: 33233837 PMCID: PMC7699892 DOI: 10.3390/ijms21228809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, affects millions of people in South America. The current treatments are limited, have severe side effects, and are only partially effective. Drug repositioning, defined as finding new indications for already approved drugs, has the potential to provide new therapeutic options for Chagas. In this work, we conducted a structure-based drug repositioning approach with over 130,000 3D protein structures to identify drugs that bind therapeutic Chagas targets and thus represent potential new Chagas treatments. The screening yielded over 500 molecules as hits, out of which 38 drugs were prioritized following a rigorous filtering process. About half of the latter were already known to have trypanocidal activity, while the others are novel to Chagas disease. Three of the new drug candidates—ciprofloxacin, naproxen, and folic acid—showed a growth inhibitory activity in the micromolar range when tested ex vivo on T. cruzi trypomastigotes, validating the prediction. We show that our drug repositioning approach is able to pinpoint relevant drug candidates at a fraction of the time and cost of a conventional screening. Furthermore, our results demonstrate the power and potential of structure-based drug repositioning in the context of neglected tropical diseases where the pharmaceutical industry has little financial interest in the development of new drugs.
Collapse
|
48
|
Improvement of mesoporous silica nanoparticles: A new approach in the administration of NSAIDS. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Wojcieszyńska D, Guzik U. Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation. Appl Microbiol Biotechnol 2020; 104:1849-1857. [PMID: 31925484 PMCID: PMC7007908 DOI: 10.1007/s00253-019-10343-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
This article summarizes the current knowledge about the presence of naproxen in the environment, its toxicity to nontarget organisms and the microbial degradation of this drug. Currently, naproxen has been detected in all types of water, including drinking water and groundwater. The concentrations that have been observed ranged from ng/L to μg/L. These concentrations, although low, may have a negative effect of long-term exposure on nontarget organisms, especially when naproxen is mixed with other drugs. The biological decomposition of naproxen is performed by fungi, algae and bacteria, but the only well-described pathway for its complete degradation is the degradation of naproxen by Bacillus thuringiensis B1(2015b). The key intermediates that appear during the degradation of naproxen by this strain are O-desmethylnaproxen and salicylate. This latter is then cleaved by 1,2-salicylate dioxygenase or is hydroxylated to gentisate or catechol. These intermediates can be cleaved by the appropriate dioxygenases, and the resulting products are incorporated into the central metabolism. KEY POINTS: •High consumption of naproxen is reflected in its presence in the environment. •Prolonged exposure of nontargeted organisms to naproxen can cause adverse effects. •Naproxen biodegradation occurs mainly through desmethylnaproxen as a key intermediate.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
50
|
Graphene-Oxide-Based Electrochemical Sensors for the Sensitive Detection of Pharmaceutical Drug Naproxen. SENSORS 2020; 20:s20051252. [PMID: 32106566 PMCID: PMC7085571 DOI: 10.3390/s20051252] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/11/2023]
Abstract
Here we report on a selective and sensitive graphene-oxide-based electrochemical sensor for the detection of naproxen. The effects of doping and oxygen content of various graphene oxide (GO)-based nanomaterials on their respective electrochemical behaviors were investigated and rationalized. The synthesized GO and GO-based nanomaterials were characterized using a field-emission scanning electron microscope, while the associated amounts of the dopant heteroatoms and oxygen were quantified using x-ray photoelectron spectroscopy. The electrochemical behaviors of the GO, fluorine-doped graphene oxide (F-GO), boron-doped partially reduced graphene oxide (B-rGO), nitrogen-doped partially reduced graphene oxide (N-rGO), and thermally reduced graphene oxide (TrGO) were studied and compared via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that GO exhibited the highest signal for the electrochemical detection of naproxen when compared with the other GO-based nanomaterials explored in the present study. This was primarily due to the presence of the additional oxygen content in the GO, which facilitated the catalytic oxidation of naproxen. The GO-based electrochemical sensor exhibited a wide linear range (10 µM–1 mM), a high sensitivity (0.60 µAµM−1cm−2), high selectivity and a strong anti-interference capacity over potential interfering species that may exist in a biological system for the detection of naproxen. In addition, the proposed GO-based electrochemical sensor was tested using actual pharmaceutical naproxen tablets without pretreatments, further demonstrating excellent sensitivity and selectivity. Moreover, this study provided insights into the participatory catalytic roles of the oxygen functional groups of the GO-based nanomaterials toward the electrochemical oxidation and sensing of naproxen.
Collapse
|