1
|
Kraft T, Grützmann K, Meinhardt M, Meier F, Westphal D, Seifert M. Personalized identification and characterization of genome-wide gene expression differences between patient-matched intracranial and extracranial melanoma metastasis pairs. Acta Neuropathol Commun 2024; 12:67. [PMID: 38671536 PMCID: PMC11055243 DOI: 10.1186/s40478-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Theresa Kraft
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Konrad Grützmann
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden and the National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Bashraheel SS, Goda SK. Novel SPEA Superantigen Peptide Agonists and Peptide Agonist-TGFαL3 Conjugate. In Vitro Study of Their Growth-Inhibitory Effects for Targeted Cancer Immunotherapy. Int J Mol Sci 2023; 24:10507. [PMID: 37445686 DOI: 10.3390/ijms241310507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial superantigens (SAgs) are effective T-cell stimulatory molecules that lead to massive cytokine production. Superantigens crosslink between MHC class II molecules on the Antigen Presenting Cells (APC) and TCR on T-cells. This enables them to activate up to 20% of resting T cells, whilst conventional antigen presentation results in the activation of 0.001-0.0001% of the T cell population. These biological properties of superantigens make them attractive for use in immunotherapy. Previous studies have established the effectiveness of superantigens as therapeutic agents. This, however, was achieved with severe side effects due to the high lethality of the native toxins. Our study aims to produce superantigen-based peptides with minimum or no lethality for safer cancer treatment. In previous work, we designed and synthesized twenty overlapping SPEA-based peptides and successfully mapped regions in SPEA superantigen, causing a vasodilatory response. We screened 20 overlapping SPEA-based peptides designed and synthesized to cover the whole SPEA molecule for T-cell activation and tumor-killing ability. In addition, we designed and synthesized tumor-targeted superantigen-based peptides by fusion of TGFαL3 either from the N' or C' terminal of selected SPEA-based peptides with an eight-amino acid flexible linker in between. Our study identified parts of SPEA capable of stimulating human T-cells and producing different cytokines. We also demonstrated that the SPEA-based peptide conjugate binds specifically to cancer cells and can kill this cancer. Peptides induce T-cell activation, and tumor killing might pave the way for safer tumor-targeted superantigens (TTS). We proposed the combination of our new superantigen-based peptide conjugates with other immunotherapy techniques for effective and safer cancer treatment.
Collapse
Affiliation(s)
| | - Sayed K Goda
- College of Science and Technology, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
3
|
Von Roemeling CA, Doonan BP, Klippel K, Schultz D, Hoang-Minh L, Trivedi V, Li C, Russell RA, Kanumuri RS, Sharma A, Tun HW, Mitchell DA. Oral IRAK-4 Inhibitor CA-4948 Is Blood-Brain Barrier Penetrant and Has Single-Agent Activity against CNS Lymphoma and Melanoma Brain Metastases. Clin Cancer Res 2023; 29:1751-1762. [PMID: 36749885 PMCID: PMC10150246 DOI: 10.1158/1078-0432.ccr-22-1682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE An ongoing challenge in cancer is the management of primary and metastatic brain malignancies. This is partly due to restrictions of the blood-brain barrier and their unique microenvironment. These challenges are most evident in cancers such as lymphoma and melanoma, which are typically responsive to treatment in systemic locations but resistant when established in the brain. We propose interleukin-1 receptor-associated kinase-4 (IRAK-4) as a potential target across these diseases and describe the activity and mechanism of oral IRAK-4 inhibitor CA-4948. EXPERIMENTAL DESIGN Human primary central nervous system lymphoma (PCNSL) and melanoma brain metastases (MBM) samples were analyzed for expression of IRAK-4 and downstream transcription pathways. We next determined the central nervous system (CNS) applicability of CA-4948 in naïve and tumor-bearing mice using models of PCNSL and MBM. The mechanistic effect on tumors and the tumor microenvironment was then analyzed. RESULTS Human PCNSL and MBM have high expression of IRAK-4, IRAK-1, and nuclear factor kappa B (NF-κB). This increase in inflammation results in reflexive inhibitory signaling. Similar profiles are observed in immunocompetent murine models. Treatment of tumor-bearing animals with CA-4948 results in the downregulation of mitogen-activated protein kinase (MAPK) signaling in addition to decreased NF-κB. These intracellular changes are associated with a survival advantage. CONCLUSIONS IRAK-4 is an attractive target in PCNSL and MBM. The inhibition of IRAK-4 with CA-4948 downregulates the expression of important transcription factors involved in tumor growth and proliferation. CA-4948 is currently being investigated in clinical trials for relapsed and refractory lymphoma and warrants further translation into PCNSL and MBM.
Collapse
Affiliation(s)
- Christina A. Von Roemeling
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Bently P. Doonan
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, Florida
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Daniel Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Lan Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Vrunda Trivedi
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Rylynn A. Russell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Raju S. Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Han W. Tun
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Duane A. Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
4
|
Pedersen S, Møller S, Donia M, Persson GF, Svane IM, Ellebaek E. Real-world data on melanoma brain metastases and survival outcome. Melanoma Res 2022; 32:173-182. [PMID: 35256571 DOI: 10.1097/cmr.0000000000000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Novel medical therapies have revolutionized outcome for patients with melanoma. However, patients with melanoma brain metastases (MBM) still have poor survival. Data are limited as these patients are generally excluded from clinical trials, wherefore real-world data on clinical outcome may support evidence-based treatment choices for patients with MBM. Patients diagnosed with MBM between 2008 and 2020 were included retrospectively. Patient characteristics, treatment, and outcome data were recorded from The Danish Metastatic Melanoma Database, pathology registries, electronic patient files, and radiation plans. Anti-programmed cell death protein 1 antibodies and the combination of BRAF/MEK-inhibitors were introduced in Denmark in 2015, and the cohort was split accordingly for comparison. A total of 527 patients were identified; 148 underwent surgical excision of MBM, 167 had stereotactic radiosurgery (SRS), 270 received whole-brain radiation therapy (WBRT), and 343 received systemic therapies. Median overall survival (mOS) for patients diagnosed with MBM before and after 2015 was 4.4 and 7.6 months, respectively. Patients receiving surgical excision as first choice of treatment had the best mOS of 10.9 months, whereas patients receiving WBRT had the worst outcome (mOS, 3.4 months). Postoperative SRS did not improve survival or local control after surgical excision of brain metastases. Of the 40 patients alive >3 years after diagnosis of MBM, 80% received immunotherapy at some point after diagnosis. Patients with meningeal carcinosis did not benefit from treatment with CPI. Outcome for patients with MBM has significantly improved after 2015, but long-term survivors are rare. Most patients alive >3 years after diagnosis of MBM received immunotherapy.
Collapse
Affiliation(s)
- Sidsel Pedersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
| | - Søren Møller
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Gitte Fredberg Persson
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Eva Ellebaek
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
| |
Collapse
|
5
|
Immune-related aseptic meningitis and strategies to manage immune checkpoint inhibitor therapy: a systematic review. J Neurooncol 2022; 157:533-550. [PMID: 35416575 PMCID: PMC9458695 DOI: 10.1007/s11060-022-03997-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) can induce adverse neurological effects. Due to its rarity as an adverse effect, meningitis has been poorly described. Therefore, meningitis diagnosis and management can be challenging for specialists. Moreover, meningitis can be an obstacle to resuming immunotherapy. Given the lack of alternatives, the possibility of reintroducing immunotherapy should be discussed on an individual basis. Here, we present a comprehensive systematic review of meningitis related to ICIs. REVIEW We performed a search for articles regarding immune-related meningitis published in PubMed up to November 2021 with the MeSH terms "meningitis" and "immune checkpoint" using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. We summarized the studies not only by category but also based on whether it was a primary article or case report to provide a systematic overview of the subject. We reviewed a total of 38 studies and herein report the clinical experiences, pharmacovigilance data and group knowledge from these studies. CONCLUSION This review summarizes the existing information on immune-related meningitis and the possibility of reintroducing immunotherapy after the development of central neurological side effects. To the best of our knowledge, there is little information in the literature to guide clinicians on decisions regarding whether immunotherapy should be continued after a neurological adverse event occurs, especially meningeal events. This review emphasizes the necessity of systematic examinations, steroid treatment (as a cornerstone of management) and the need for further exploratory studies to obtain a clearer understanding of how to better manage patients who experience these side effects. The findings summarized in this review can help provide guidance to practitioners who face this clinical situation.
Collapse
|
6
|
Saberian C, Sperduto P, Davies MA. Targeted therapy strategies for melanoma brain metastasis. Neurooncol Adv 2021; 3:v75-v85. [PMID: 34859235 PMCID: PMC8633745 DOI: 10.1093/noajnl/vdab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the most aggressive of the common forms of skin cancer. Metastasis to the central nervous system is one of the most common and deadly complications of this disease. Historically, melanoma patients with brain metastases had a median survival of less than 6 months. However, outcomes of melanoma patients have markedly improved over the last decade due to new therapeutic approaches, including immune and targeted therapies. Targeted therapies leverage the high rate of driver mutations in this disease, which result in the activation of multiple key signaling pathways. The RAS-RAF-MEK-ERK pathway is activated in the majority of cutaneous melanomas, most commonly by point mutations in the Braf serine-threonine kinase. While most early targeted therapy studies excluded melanoma patients with brain metastases, subsequent studies have shown that BRAF inhibitors, now generally given concurrently with MEK inhibitors, achieve high rates of tumor response and disease control in Braf-mutant melanoma brain metastases (MBMs). Unfortunately, the duration of these responses is generally relatively short- and shorter than is observed in extracranial metastases. This review will summarize current data regarding the safety and efficacy of targeted therapies for MBMs and discuss rational combinatorial strategies that may improve outcomes further.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sperduto
- Minneapolis Radiation Oncology, Minneapolis, Minnesota, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Systemic Therapies for Melanoma Brain Metastases: A Primer for Radiologists. J Comput Assist Tomogr 2020; 44:346-355. [PMID: 32217896 DOI: 10.1097/rct.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this article is to provide a primer for radiologists outlining the modern systemic therapies used in melanoma brain metastases, including tyrosine kinase inhibitors and immune checkpoint inhibitors. The role of radiologic treatment response evaluation will be discussed from the standpoint of both modern systemic therapies and more traditional treatments. CONCLUSION Understanding the role of systemic treatments in melanoma brain metastases is critical for oncologic imaging interpretation in this unique patient population.
Collapse
|
8
|
Lee JH, Menzies AM, Carlino MS, McEvoy AC, Sandhu S, Weppler AM, Diefenbach RJ, Dawson SJ, Kefford RF, Millward MJ, Al-Ogaili Z, Tra T, Gray ES, Wong SQ, Scolyer RA, Long GV, Rizos H. Longitudinal Monitoring of ctDNA in Patients with Melanoma and Brain Metastases Treated with Immune Checkpoint Inhibitors. Clin Cancer Res 2020; 26:4064-4071. [PMID: 32321716 DOI: 10.1158/1078-0432.ccr-19-3926] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Brain involvement occurs in the majority of patients with metastatic melanoma. The potential of circulating tumor DNA (ctDNA) for surveillance and monitoring systemic therapy response in patients with melanoma brain metastases merits investigation. EXPERIMENTAL DESIGN This study examined circulating BRAF, NRAS, and c-KIT mutations in patients with melanoma with active brain metastases receiving PD-1 inhibitor-based therapy. Intracranial and extracranial disease volumes were measured using the sum of product of diameters, and response assessment performed using RECIST. Longitudinal plasma samples were analyzed for ctDNA over the first 12 weeks of treatment (threshold 2.5 copies/mL plasma). RESULTS Of a total of 72 patients, 13 patients had intracranial metastases only and 59 patients had concurrent intracranial and extracranial metastases. ctDNA detectability was 0% and 64%, respectively, and detectability was associated with extracranial disease volume (P < 0.01). Undetectable ctDNA on-therapy was associated with extracranial response (P < 0.01) but not intracranial response. The median overall survival in patients with undetectable (n = 34) versus detectable (n = 38) ctDNA at baseline was 39.2 versus 10.6 months [HR, 0.51; 95% confidence interval (CI), 0.28-0.94; P = 0.03] and on-therapy was 39.2 versus 9.2 months (HR, 0.32; 95% CI, 0.16-0.63; P < 0.01). CONCLUSIONS ctDNA remains a strong prognostic biomarker in patients with melanoma with brain metastases, especially in patients with concurrent extracranial disease. However, ctDNA was not able to detect or monitor intracranial disease activity, and we recommend against using ctDNA as a sole test during surveillance and therapeutic monitoring in patients with melanoma.
Collapse
Affiliation(s)
- Jenny H Lee
- Department of Biomedical Science, Macquarie University, Sydney, New South Wales, Australia. .,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Sydney University Medical School, Sydney, New South Wales, Australia.,Department of Medical Oncology, Royal North Shore Hospital, Sydney, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Sydney University Medical School, Sydney, New South Wales, Australia.,Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Ashleigh C McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison M Weppler
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Russell J Diefenbach
- Department of Biomedical Science, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard F Kefford
- Department of Biomedical Science, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael J Millward
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Zeyad Al-Ogaili
- Department of Molecular Imaging and Therapy Service, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Thien Tra
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Sydney University Medical School, Sydney, New South Wales, Australia.,Department of Medical Oncology, Royal North Shore Hospital, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Helen Rizos
- Department of Biomedical Science, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|