1
|
Blinova VG, Gladilina YA, Eliseeva DD, Lobaeva TA, Zhdanov DD. [Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:55-67. [PMID: 35221297 DOI: 10.18097/pbmc20226801055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulatory T-cells CD4⁺CD25⁺FoxP3⁺CD127low (Tregs) play a key role in the maintenance of tolerance to auto antigens, inhibit function of effector T and B lymphocytes, and provide a balance between effector and regulatory arms of immunity. Patients with autoimmune diseases have decreased Treg numbers and impaired suppressive activity. Transformed ex vivo autologous Tregs could restore destroyed balance of the immune system. We developed a method for Treg precursor cell cultivation. Following the method, we were able to grown up 300-400 million of Tregs cells from 50 ml of peripheral blood during a week. Transformed ex vivo Tregs are 90-95% CD4⁺CD25⁺FoxP3⁺CD127low and have increased expression of transcription genes FoxP3 and Helios. Transformed ex vivo Tregs have increased demethylation of FoxP3 promoter and activated genes of proliferation markers Cycline B1, Ki67 and LGALS 1. Transformed ex vivo Tregs have increased suppressive activity and up to 80-90% these cells secrete cytokines TNFα и IFNγ. Our data suggest transformed ex vivo autologous Tregs have genetic, immunophenotypic and functional characteristics for regulatory T-cells and further can be used for adoptive immunotherapy autoimmune diseases and inhibition of transplantation immunity.
Collapse
Affiliation(s)
- V G Blinova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - T A Lobaeva
- Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
2
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
3
|
Husseiny MI, Du W, Mbongue J, Lenz A, Rawson J, Kandeel F, Ferreri K. Factors affecting Salmonella-based combination immunotherapy for prevention of type 1 diabetes in non-obese diabetic mice. Vaccine 2018; 36:8008-8018. [PMID: 30416020 DOI: 10.1016/j.vaccine.2018.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
We previously reported the development of an oral vaccine for diabetes based on live attenuated Salmonella-expressing preproinsulin (PPI) as the autoantigen. When combined with host cell-expressed TGFβ, the vaccine prevented the onset of diabetes in non-obese diabetic (NOD) mice. Herein, we investigated factors that could affect vaccine efficacy including vaccination number, optimization of the autoantigen codon sequence, Salmonella SPI2-TTSS promoter/effector combinations, concurrent short-course low-dose anti-CD3. We also evaluated autoantigen GAD65 and cytokine IL10 treatment upon vaccine efficacy. T-cells we employed to elucidate the mechanism of the vaccine action. Our results showed that GAD65+TGFβ or PPI+TGFβ+IL10 prevented the onset of diabetes in the NOD mice and maintained glucose tolerance. However, increasing the number of vaccine doses, codon-optimization of the autoantigen(s) or use of other Salmonella promoter/effector combinations had no in vivo effect. Interestingly, two doses of vaccine (PPI+TGFβ+IL10) combined with a sub-therapeutic dose of anti-CD3 prevented diabetes and decreased hyperglycemia in mice. The combined therapy also increased splenic Tregs and local Tregs in pancreatic lymph nodes (PLN) and increased regulatory (IL10 and IL2) but reduced inflammatory (IFNγ and TNFα) cytokines. Together, these results indicate that the combination of low vaccine dose number, less vaccine autoantigen expression and short-course low-dose anti-CD3 can increase regulatory mechanisms and suppress autoimmunity.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Weiting Du
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jacques Mbongue
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ayelet Lenz
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kevin Ferreri
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute. Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
4
|
Zhao N, Li H, Yan Y, Jiang R, He X. Mesenchymal stem cells overexpressing IL-35 effectively inhibit CD4 + T cell function. Cell Immunol 2017; 312:61-66. [PMID: 27993351 DOI: 10.1016/j.cellimm.2016.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as promising candidates for cell-based immune tolerance therapy. Interleukin 35 (IL-35) is a relatively newly identified cytokine required for the regulatory and suppressive functions of regulatory T cells (Treg), playing an important role in the prevention of autoimmune diseases. In this study, we isolated adipose tissue-derived MSCs, a good vehicle for cell therapy, which were transfected with a lentivirus vector for the overexpression of the therapeutic murine IL-35 gene. IL-35 levels in transfected MSCs (IL-35-MSCs) were quantified by ELISA. Co-culture of CD4+ T cells and IL-35-MSCs resulted in the inhibition of CD4+ T cell proliferation and IL-17A secretion. In addition, IL-35-MSCs induced IL-10 production by CD4+ T cells, but did not affect IFN-γ. These findings suggested that MSCs over-expressing IL-35 had higher immunosuppressive capacity compared with non-transfected MSCs, and may provide a useful approach for basic research on gene therapy for autoimmune disorders.
Collapse
Affiliation(s)
- Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Hongyue Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongjia Yan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Zongyi Y, Dongying C, Baifeng L. Global Regulatory T-Cell Research from 2000 to 2015: A Bibliometric Analysis. PLoS One 2016; 11:e0162099. [PMID: 27611317 PMCID: PMC5017768 DOI: 10.1371/journal.pone.0162099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
We aimed to analyze the global scientific output of regulatory T-cell (Treg) research and built a model to qualitatively and quantitatively evaluate publications from 2000 to 2015. Data were obtained from the Web of Science Core Collection (WoSCC) of Thomson Reuters on January 1, 2016. The bibliometric method and Citespace III were used to analyze authors, journals, publication outputs, institutions, countries, research areas, research hotspots, and trends. In total, we identified 35,741 publications on Treg research from 2000 to 2015, and observed that the annual publication rate increased with time. The Journal of Immunology published the highest number of articles, the leading country was the USA, and the leading institute was Harvard University. Sakaguchi, Hori, Fontenot, and Wang were the top authors in Treg research. Immunology accounted for the highest number of publications, followed by oncology, experimental medicine, cell biology, and hematology. Keyword analysis indicated that autoimmunity, inflammation, cytokine, gene expression, foxp3, and immunotherapy were the research hotspots, whereas autoimmune inflammation, gene therapy, granzyme B, RORγt, and th17 were the frontiers of Treg research. This bibliometric analysis revealed that Treg-related studies are still research hotspots, and that Treg-related clinical therapies are the research frontiers; however, further study and collaborations are needed worldwide. Overall, our findings provide valuable information for the editors of immunology journals to identify new perspectives and shape future research directions.
Collapse
Affiliation(s)
- Yin Zongyi
- Department of Hepatobiliary Surgery and Organ Transplantation, The First Hospital of China Medical University, Shenyang, China
| | - Chen Dongying
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Li Baifeng
- Department of Hepatobiliary Surgery and Organ Transplantation, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
6
|
Stifter K, Schuster C, Schlosser M, Boehm BO, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep 2016; 6:29419. [PMID: 27406624 PMCID: PMC4942695 DOI: 10.1038/srep29419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Schuster
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Michael Schlosser
- Department of Medical Biochemistry and Molecular Biology, Research Group of Predictive Diagnostics, University Medical Centre Greifswald, Karlsburg, Germany
| | - Bernhard Otto Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore.,Imperial College London, London, UK
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Donma M, Karasu E, Ozdilek B, Turgut B, Topcu B, Nalbantoglu B, Donma O. CD4(+), CD25(+), FOXP3 (+) T Regulatory Cell Levels in Obese, Asthmatic, Asthmatic Obese, and Healthy Children. Inflammation 2016; 38:1473-8. [PMID: 25655390 DOI: 10.1007/s10753-015-0122-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this prospective case control study is to determine CD4(+), CD25(+), and FoxP3(+) T regulatory cells (Tregs) and T helper cells (Ths) in obese, asthmatic, asthmatic obese, and healthy children. Obese (n = 40), asthmatic (n = 40), asthmatic obese (n = 40), and healthy children (n = 40) were included in this study. Blood samples collected from children were marked with CD4, CD25, ve Foxp3 in order to detect Tregs and Ths by flow cytometric method. Statistical analyses were performed. p ≤ 0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0.16 %; p ≤ 0.001), asthmatic (0.25 %; p ≤ 0.01), and asthmatic obese (0.29 %; p ≤ 0.05) groups than control group (0.38 %). Ths were counted higher in asthma group than control (p ≤ 0.01) and obese (p ≤ 0.001) groups. T cell immunity plays important roles in chronic inflammatory diseases such as obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic, and asthmatic obese children might represent a challenge of these cells.
Collapse
Affiliation(s)
- Metin Donma
- Medical Faculty, Department of Pediatrics, Namik Kemal University, Tekirdag, Turkey,
| | | | | | | | | | | | | |
Collapse
|
8
|
Huang X, Wu H, Lu Q. The mechanisms and applications of T cell vaccination for autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2015; 47:219-33. [PMID: 25096807 DOI: 10.1007/s12016-014-8439-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmune diseases (ADs) are a spectrum of diseases originating from loss of immunologic self-tolerance and T cell abnormal autoreactivity, causing organ damage and death. However, the pathogenic mechanism of ADs remains unclear. The current treatments of ADs include nonsteroidal anti-inflammatory drugs (NSAIDS), antimalarials, corticosteroids, immunosuppressive drugs, and biological therapies. With the need to prevent side effects resulting from current treatments and acquire better clinical remission, developing a novel pharmaceutical treatment is extremely urgent. The concept of T cell vaccination (TCV) has been raised as the finding that immunization with attenuated autoreactive T cells is capable of inducing T cell-dependent inhibition of autoimmune responses. TCV may act as an approach to control unwanted adaptive immune response through eliminating the autoreactive T cells. Over the past decades, the effect of TCV has been justified in several animal models of autoimmune diseases including experimental autoimmune encephalomyelitis (EAE), murine autoimmune diabetes in nonobese diabetic (NOD) mice, collagen-induced arthritis (CIA), and so on. Meanwhile, clinical trials of TCV have confirmed the safety and efficacy in corresponding autoimmune diseases ranging from multiple sclerosis (MS) to systemic lupus erythematosus (SLE). This review aims to summarize the ongoing experimental and clinical trials and elucidate possible molecule mechanisms of TCV.
Collapse
Affiliation(s)
- Xin Huang
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011, Hunan, People's Republic of China
| | | | | |
Collapse
|